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Imaging neural generators from MEG magnetic fields is often con-
sidered as a compromise between computationally-reasonable metho-
dology that usually yields poor spatial resolution on the one hand, and
more sophisticated approaches on the other hand, potentially leading to
intractable computational costs.

We approach the problem of obtaining well-resolved source images
with unexcessive computation load with a multiresolution image model
selection (MiMS) technique. The building blocks of the MiMS source
model are parcels of the cortical surface which can be designed at
multiple spatial resolutions with the combination of anatomical and
functional priors. Computation charge is reduced owing to 1) compact
parametric models of the activation of extended brain parcels using
current multipole expansions and 2) the optimization of the generalized
cross-validation error on image models, which is closed-form for the
broad class of linear estimators of neural currents. Model selection can
be complemented by any conventional imaging approach of neural
currents restricted to the optimal image support obtained from MiMS.

The estimation of the location and spatial extent of brain activations
is discussed and evaluated using extensive Monte-Carlo simulations.
An experimental evaluation was conducted with MEG data from a
somatotopic paradigm. Results show that MiMS is an efficient image
model selection technique with robust performances at realistic noise
levels.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

When MEG source estimation is approached as an image
reconstruction problem (Baillet et al., 2001), the image source
model is typically built from elementary sources such as current
dipoles, which are distributed either within the entire 3D head
volume or alternatively onto the individual cortical anatomy with
orientations normal to the local cortical surface (Dale and Sereno,
1993). We note Γ the cortical envelope that sustains the source
model and D the set of n elementary cortical dipoles di, that sample
Γ. We refer to D={di∈Γ, i∈ [1, 2, … , n]} as the global image
support of neural currents.

The forward model of instantaneous data formation writes:

B ¼ GJþ ϵ; ð1Þ

where B is a matrix of m measurements on the MEG sensor array;
J are the unknown source amplitudes of all elementary sources in
D; G is the forward gain matrix that collects their forward fields
sampled at the sensor array (Mosher et al., 1999); ϵ is an additive
nuisance term. The resulting imaging problem consists in deriving
an inverse model for the amplitudes of the elemental current
elements. In MEG imaging however, this inverse problem is cursed
by severe underdetermination (i.e. n≫m) and has fundamentally
no unique solution (Hämäläinen et al., 1993). Conventional add-
resses to this issue stem from the concept of regularization which
classically reduces to complementing the image source model with
additional priors or constraints (Demoment, 1989; Baillet et al.,
2001; Auranen et al., 2005). Such complementary information may
take many faces in MEG and EEG (electroencephalography)
source imaging, though generally reduces to considering that the
current distribution is either spatially smooth or sparse focal.

Smoothness is readily enforced by the broad class of minimum-
norm priors which may apply either directly to the amplitude of
currents (Wang et al., 1992) or to some of their low-order spatial
derivatives (e.g. gradient or Laplacian; Pascual-Marqui et al.,
1994). These current estimates are generally robust to a reasonable
amount of nuisance in the data and approximations in the compu-
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tation of G (Wagner et al., 2004). They are also fast to compute
because the estimate is unique and linear in the data, but they suffer
by construction from exaggerated poor spatial resolution, which
bridles their development and murk the appraisal of the correspond-
ing current estimates. Classical sparse focal image models have
been introduced as a response to these limitations and are reviewed
in (Baillet et al., 2001). However, selecting a particular class of
image models to ensure sparsity in the estimated distribution of
currents is certainly as arbitrary as preferring either one of the
smooth image models instead.

Hence, while there is a long tradition of considering inverse
modelling as an optimization problem i.e. designate the solution to
an inverse problem as the source model corresponding to the
putative global maximum of some adequacy functional we are
facing the situation that the number of equally-satisfactory image
models is just too large to depart from complete arbitrariness. Such
an issue is general to the resolution of severely ill-posed inverse
problems, and has triggered a steady paradigm shift from mere
model optimization to model selection (Knösche et al., 1998;
Waldorp et al., 2002; Tarantola, 2006).

As for regularization, model selection can be naturally ap-
proached with the Bayesian theory of probability where multiple
levels of inferences can be achieved, unconditional on the image
model assumed (Trujillo-Barreto et al., 2004). These recent deve-
lopments extend the approaches to model optimization in the
Bayesian framework that were previously introduced for MEG in
(Baillet and Garnero, 1997; Phillips et al., 1997). Though very
elegant and promising, exact Bayesian inference for model select-
ion is computationally demanding (Sato et al., 2004; Daunizeau
et al., 2005; Phillips et al., 2005; Friston et al., 2006), which may
necessitate to reduce the number of free parameters in the image
model (e.g. the number n of elementary sources; Schmidt et al.,
1999).

Alternatives to Bayesian model selection from sparse-focal
image priors have been empirically approached with the combina-
tion of iterative optimization with multiresolution image models. In
this context, the image support D is altered during the global esti-
mation procedure by removing some brain regions from the image
model when moving to the next spatial resolution (Gorodnitsky et
al., 1995; David and Garnero, 2002; Liu et al., 2005). This leads to
some necessary limitation on the number of free parameters to be
estimated at each iteration step, hence the need to design econo-
mical model of the entire distribution of cortical currents. Choosing
a simple (i.e. low-dimensional) model for extended regional brain
activity e.g. (Gavit et al., 2001), where an elementary current dipole
would account for a larger, spatially-extended activity of a cortical
parcel is exposed to the risk of yielding a global source model of
limited predictive power. Conversely, advanced regional source
models as in (Moran et al., 2005; Daunizeau et al., 2005) may
require a larger number of parameters that may reduce their practice
to image supports that significantly depart from the intricate cortical
geometry.

In this context, this article introduces a new framework for
empirical multiresolution image model selection (MiMS) in MEG.
We suggest the building blocks of the image models at various
spatial resolutions be parcels of the cortical surface, thereby ex-
plicitly enforcing the prior on the sparse focal nature of the dis-
tribution of cortical currents on a short time segment. Cortical
parcellation is achieved conditionally to the homogenous distribu-
tion of surface areas across parcels at each spatial resolution k, with
additional priors from geometrical or even atlas-based features of

the cortical envelope (Piecewise modelling of the source image
section). Efficient and compact parametric modelling of distributed
currents within each parcel is achieved using their equivalent
current multipole expansions (CME, Modelling neural currents at
the regional scale section).

Model quality at each spatial resolution is evaluated according to
the general cross-validation (GCV) error principle. This is detailed
in the Model selection section where we also discuss how GCV
error can be analytically – hence rapidly – evaluated in practice.

Rather than formulating this procedure in the Bayesian frame-
work – where the elaboration of some of the marginal distributions
on priors and related multilevel inference may be rather intricate –
we have adopted the dual empirical frequentist world-view by
implicitly sampling the posterior distributions of the image model
using a multistart estimation procedure from multiple initial con-
ditions. The MiMS approach yields an image model for a given data
segment which may not be defined at the finest possible spatial
resolution. We further derive from this procedure the empirical
estimate of the probability for a given elementary dipole di of the
global image support D of being effectively active (A posteriori
classification of elementary sources and estimation of neural cur-
rents section).

Following a similar approach as Mattout et al. (2005), the
application of MiMS is illustrated in the A posteriori classification
of elementary sources and estimation of neural currents section
where the resulting map of probability-like coefficients is thres-
holded – to yield a subset of D as the final image support model –
and optionally acts as intrinsic functional priors when coupled to an
imaging estimate of cortical currents. This latter approach will be
exemplified with the association of MiMS to a weighted minimum-
norm estimate (WMNE) of MEG sources, hence the MiMSWMNE
acronym.

The technique is extensively evaluated on Monte-Carlo expe-
riments, from which we discuss on the recovery of crucial para-
meters of activated brain regions such as location and spatial extent
in the Monte-Carlo experiments section.

The evaluation is completed by the analysis of real MEG data
from a paradigm on somaesthetic mapping of hand fingers (Illus-
trative example on real data: somaesthetic mapping of hand fingers
section).

Methods

Rationale and methodological overview

We concisely review in this Section the multiple steps taken in
the MiMS technique before they are further detailed in following
subsections.

Extensive experimental evidences from e.g. functional Magnetic
Resonance Imaging (fMRI) report on the regional sparse focal
nature of instantaneous stimulus-evoked cortical activity. Further,
neural sources of MEG and EEG are usually considered to be
distributed in regions extending up to a few cm2 (Tao et al., 2005;
Murakami and Okada, 2006).

This sparse focal nature of neural currents at the regional level
may be introduced explicitly in the image source model considered
in the resolution of the associated inverse problem (Baillet and
Garnero, 1997; Phillips et al., 1997). Here we further develop this
approach in a multiresolution framework by considering parcels of
the cortical surface envelope as building blocks of the image source
model.
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Let Mk denote the image source model at spatial resolution k.
This model predicts that instantaneous brain activity consists of a
collection of nc cortical parcels:

Mk ¼ fC k
j ; ja½1; 2; N ; nc&goΓ: ð2Þ

In practice, each cortical parcel C k
j consists of a contiguous

set of elemental dipoles from the global image source model
D.

In the very specific context of multiresolution image modelling,
increasing the spatial resolution from k to k+1 implies decreasing
the typical surface area of parcels in Mkþ1. This would induce the
uncontrolled increase of nc with k – hence of the number of
unknowns in the image source model – if Mk were supposed to
sample the entire cortical manifold Γ.

Consequently, we assume that as spatial resolution increases, the
support of the image source model does not cover the entire cortical
manifold Γ anymore and that nc is constant and does not depend on
k. This may be achieved by discarding one of the parcels in Mk to
form Mkþ1 as a set of nc new and smaller cortical parcels. Hence,
we define Dk as the support of the image source model at spatial
resolution k, which is a subset of elemental sources originally
available in D.

We further define D1 ¼ D and kmax, the finest spatial resolution
where all parcels in Mkmax consist of a single elementary dipole
(hence card(Dkmax )=nc).

Identifying which cortical parcel will be discarded from Mk

before moving to resolution k+1 yields some issues in model
design and selection that are addressed as follows:

(1) Design of an image source model at resolution k: the piece-
wise image model Mk is designed from the set of elemental
sources available in Dk ;

(2) Model selection: exhaustively evaluate the GCV error of all
nc sub-models of Mk consisting in alternatively removing
one of its nc parcels. The elementary dipoles of the cortical
parcel which, when removed from Mk , yields the submodel
with the least GCVerror are removed from Dk to yield Dkþ1,
the support of the image source model at the next spatial
resolution k+1.

This multiresolution image model selection (MiMS) is con-
ducted iteratively until the finest possible spatial resolution kmax is
reached. The best image source model in the least GCVerror sense
is defined retrospectively as Mk*.

Uncertainty on the determination of k* – that is on the final
model selection – is empirically inferred by restarting the entire
procedure by sampling multiple designs for the initial piecewise
image model M1.

As an immediate benefit, the MiMS results in a score map W
of the empirical probability of any elemental source di∈D to
belong to the final image source model (A posteriori classifica-
tion of elementary sources and estimation of neural currents
section).

This map may either be thresholded to classify sources in D as
either being active or non-active and/or directly passed as intrinsic
prior weights to a subsequent imaging procedure to estimate neural
currents (Mattout et al., 2005). This will be illustrated in the Results
section.

We now proceed to the detailed description of the technical
aspects of each of these steps.

Piecewise modelling of the source image

At each spatial resolution k, the set of available elemental dipoles
Dk is paved with nc non-overlapping cortical parcels Ckj obtained
from a region-growing procedure with neuroanatomical priors.

The rationale supporting this approach anticipates that new
neuroanatomical atlases (Mazziotta et al., 2001; Toga et al., 2006)
and the development of high-field MRI will help unveil the inter-
play between the structural morphology and functional significance
of many brain regions, thereby contributing to new functional
imaging models with increasingly pertinent anatomo-functional and
neuro-architectural priors.

As a proof of concept, the atlas of Brodmann areas delineated on
the Colin27 image set from the Montreal Neurological Institute
(MNI) was back-projected with a nearest-neighbor approach onto
the individual cortical anatomy of the subjects involved in this
study, once all MRI scans were co-registered in the MNI normalized
referential with affine transformations (BrainStorm toolbox, http://
neuroimage.usc.edu/brainstorm).

Cortical circumvolutions were also considered as additional
guidelines to parcellation at a more local scale, by favoring
minimal curvature within a given parcel. The cortical manifold Γ
was extracted from T1-weighted MRI axial scans (1×1×1.5 mm
voxel size) and triangulated using the automatic pipeline of
processes from The Anatomist software available in the brainVISA
environment (http://brainvisa.info). The global image support D
for MEG source modelling was obtained from the resulting
tessellation of the cortical surface by distributing a current dipole at
each node of the corresponding triangulation, with its orientation
normal to the local cortical surface.

The cortical surface was subsequently automatically segmented
into crest zones, i.e. regions where surface curvature is locally
homogenous. Crest zones were obtained from a region-growing
process using crest lines as elementary skeletons (Stylianou and
Farin, 2004). Crest line are sets of points of Γ where surface
curvature is flat (Stylianou and Farin, 2003). In practice, cortical
crest zones grow from the gyral crowns of the cortex and meet at
sulcal fundi (Figs. 1d–f). This approach yields an extension to
surface manifolds of existing volumic, voxel-based, parcellation
techniques (Flandin et al., 2002).

These two pieces of priors (Brodmann and crest zones) were
combined at every spatial resolution k to build the cortical parcels of
Mk with the additional constraint that the distribution of parcel
surface areas should be uniform. Let Ak denote the average surface
area of a parcel at resolution k:

Ak ¼
SðDkÞ
nc

; ð3Þ

where SðDkÞ is the total surface area of the image support at
resolution k. The region-growing process is seeded randomly at an
elemental dipole source di∈Dk and yields all C k

j parcels in Mk

with the following constraints:

(1) S(C k
j )∼Ak, ∀j∈ [1, nc];

(2) dipoles in C k
j belong to neighboring regional areas. Here, a

regional area is defined as the intersection between a Brod-
mann area and a crest zone.

When all elementary sources from a regional area have been
included in a given parcel C k

j and while SðC k
j ÞbAk , region growth

extends to the next available contiguous regional area.
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When SðC k
j Þ reaches Ak, another dipole seed is chosen randomly

from the remaining elemental dipoles in Dk and the process iterates
until there is no elemental source left available.

This parcellation procedure is automatic and fast: it takes
about 10 s to segment the entire cortical surface in 20 parcels of
100 cm2 on a conventional workstation (3 GHz-Pentium4, 1 GB
RAM) using Matlab (The Mathworks, Natick, MA). We have
found this technique yields satisfactory results in terms of
homogeneity in the distribution of parcel surface areas (see Fig. 2
for an illustration).

Modelling neural currents at the regional scale

A compact parametric model of neural currents sustained by
every parcel C k

j was subsequently designed. At coarser resolutions,
a single equivalent current dipole (ECD) is a poor model for
regional activations extending above 5 cm2 (de Munck et al., 1988;
Jerbi et al., 2002). Specific source models for spatially-extended
cortical currents have been proposed recently (David and Garnero,

2002), but these latter are often disconnected from the physics of
MEG and rather result from pragmatic approaches to the reduction
in the number of unknowns in the source imaging problem. Another
straightforward empirical model for extended sources would consist
of a truncated principal component analysis (PCA) of the MEG gain
submatrix made from the forward fields of the elementary dipoles in
a given parcel C k

j (Limpiti et al., 2006), or using any set of local
basis functions. This approach questions the choice for a threshold
in the truncation of the PCA or for the total dimension of the local
basis functions under consideration. These values could be esti-
mated explicitly from the data – hereby severely aggravating the
computation load – and would also implicitly depend on multiple
characteristics of the regional source that are yet not fully
understood.

Current multipolar expansions (CME) stem from the very prin-
ciples of the generation of magnetic fields and unified formulations
have been recently derived for MEG (Nolte and Curio, 2000; Jerbi
et al., 2002). Jerbi et al. (2004) further demonstrated that CME
models up to the quadrupolar order outperformed the ECD for both
focal and spatially-extended neural activity, while considerably

Fig. 1. (a) The global image support: lateral view of a smoothed tessellated cortical envelop with ∼10,000 vertices; (b) the estimation of Brodmann areas
following affine registration with the MNI atlas; (c) the crest lines (in red) extracted automatically from the cortical surface envelope using a method adapted from
Stylianou and Farin (2004). In this example, about 100 crest lines were identified automatically on each hemisphere; (d) exemplifies the obtention of crest zones
of homogeneous curvature from the growth about crest lines. As each line acts as an elemental skeleton to a crest zone, the final segmentation contained
approximatively 200 crest regions over the entire cortex. See (e) and (f) for local magnifications: arrows indicate how crest zones grow from skeletal crest lines
using the neighborhood of the sources belonging to each line.
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keeping a small fixed number of parameters to model regional
currents.

Given the intricate circumvolutions of the cortex, a minimum of
10,000 nodes are often considered as necessary to achieve the
proper spatial sampling of its surface for MEG source imaging. This
yields a minimum source density of 4 dipoles/cm2 (on a realistic
cortex tessellation of about 2000 cm2), hence 20 dipole amplitude
parameters would be necessary to model the current flows sustained
by 5 cm2 of cortex in a basic source imaging approach. The 7
moments of the corresponding quadrupolar CME model demon-
strated equivalent modelling abilities provided that the distribution
of surfacic currents is locally smooth (Jerbi et al., 2004).

Therefore, the equivalent CME of each parcel C k
jaMk is

computed explicitly about its centroid (Jerbi et al., 2004). The
general forward modelling Eq. (1) may then be rewritten under the
following compact form:

B ¼ Ḡk m̄k þ ϵ; ð4Þ

where Ḡk is the m×np CME gain matrix of the piecewise image
source model Mk at spatial resolution k, with np=nc×7, the total
number of unknowns in Mk , which does not depend on k (see
Rationale and methodological overview section). m̄k is an array of

height np gathering the CME moments of all parcels in the model
for each time instant.

We note that CME models have been extensively studied in
MEG and have been derived in EEG only just recently (Dassios, in
press). Hence we restrict this article to MEG source modelling but
we anticipate the maturation of EEG CME source models will
permit the use of MiMS in a similar manner.

For the resolution of (4) to be numerically tractable and fast at all
spatial resolutions, we chose to keep the total number of unknown
parameters np down to np∼m, the number of instantaneous mea-
surements, hence the total number of parcels nc∼m/7 is indeed
independent of the spatial resolution k.

Model selection

As spatial resolution increases from k to k+1, the building
blocks of Mkþ1 become smaller, with Ak+1bAk. As the total num-
ber of model parameters is kept constant across spatial resolutions
(see Modelling neural currents at the regional scale section), one
parcel is removed fromMk to yieldDkþ1. Choosing which of the nc
parcels needs to be removed is a model selection process that we
shall now detail.

Fig. 2. Illustrative results from cortical parcellation procedure. Examples shown are with (a) 20, (b) 200 and (c) 2000 parcels. The corresponding average (resp.
standard deviation) of the resulting parcel surface areas are (a) 100 (resp. 24) cm2, (b) 10 (resp. 1.8) cm2 and (c) 1 (resp. 0.2) cm2, which indicates a satisfactory
degree of homogeneity in their distribution.
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Let us define Mkj j, a submodel of Mk , which consists of all
parcels in Mk but C k

j , that is:

Mk=j ¼ fC k
p; p a ½1; 2; N ; nc&; p p jg: ð5Þ

The parcel to be removed fromMk is the one which corresponding
submodel minimizes the leave-one-out generalized cross-validation
(GCV) error. This criterion ensures the best similarity of the
respective predictive powers between the two consecutive models
Mk andMkþ1 (see e.g. Reeves and Mersereau, 1992) and has been
adopted in a considerable number of estimation problems, including
other applications of multiresolution imaging (Nguyen et al.,
2001a).

In practice, the GCVerror εjk of each of the nc submodelsMkj j is
sequentially evaluated under the assumption that the corresponding
CME moments from (4) are derived from the following weighted
minimum-norm estimate:

m̂kj j ¼ Ḡ
t
kj j½Ḡkj jḠ

t
kj j þ kC̄

'1
k &'1B; ð6Þ

where Ḡk| j (resp. m̂k| j) denotes the CME gain matrix Ḡk (resp. the
estimate of CME moments m̂k) deprived of the 7 columns (resp.
moments) of the CME model of C k

j ; λ is a scalar regularization
parameter and C̄k is a regularizing spatial covariance prior on CME
moments. This assumption insures fundamental benefits on the
closed-form estimation of εjk as we shall see below. Following the
directions described in Jerbi et al. (2004), a database of sample
estimates of C̄k can be built a priori and stored to disk from each
individual brain anatomy of the subjects involved in a given study.
The estimation of C̄k was obtained from source samples consisting
of 250 regional sources with sizes within the [1,10] cm2 range and
100 pAm.mm− 2 dipole moment density within cortical parcels
spanning 10 bins of typical surface areas Ak in the [1,100] cm2

range.
A major benefit from the minimal GCV error criterion is that εjk

is closed form when the estimate of model parameters is linear as in
(6); see Nguyen et al. (2001b) for demonstration:

ekj kð Þ ¼
tðḠkj jḠ

t
kj j þ kkj C̄

'1
k Þ'1Bt

traceððḠkj jḠ
t
kj j þ kkj C̄

'1
k Þ'1Þ

ð7Þ

We selected λjk as:

kkj ¼ argmin
ka½rm;rM &

ekj ðkÞ: ð8Þ

from an exhaustive search on 1,000 bins, where σm (resp. σM) is the
smallest (resp. largest) singular value of Ḡk| j C̄Ck

−1, with C̄Ck
−1 the left

part of the Cholesky decomposition of C̄k
−1 (Wahba, 1990).

Iterations on k are pursued exhaustively until the finest spatial
resolution kmax as defined in the Rationale and methodological
overview section is reached. The optimal model Mk* in the least
GCV-error sense is obtained by retrospectively identifying k* as:

k* ¼ arg min
k

ek ; ð9Þ

where

ek ¼ min
j

ekj : ð10Þ

The optimal model depends on the initial image source model
M1 which was designed from the arbitrary selection of a seed point
to the cortical parcellation process at k=1.

The posterior uncertainty on the optimal image source model
can be sampled empirically by L random initial conditions (e.g. by
randomly changing the seed point of the cortical parcellation at
k=1).

This results in a posterior empirical estimate of whether any
elemental dipole source di∈D is likely to be activated during the
analyzed data segment. Indeed, an activation coefficient is com-
puted from the accuracy score wi attributed to each elemental
dipole source di and is defined as:

8diaD;wi ¼
XL

l¼1

wl
i; ð11Þ

with

wl
i ¼

1=ek* if diaMk*
0 otherwise

:

!

This results in a map W of the empirical probability values that
elemental dipoles in D be activated:

W ¼ fw̄i; diaDg; ð12Þ

where

w̄i ¼
wi

maxiðwiÞ
a 0; 1½ &: ð13Þ

A posteriori classification of elementary sources and estimation of
neural currents

Empirical probability values in W may be passed as intrinsic
priors to any imaging procedure defined on the entire set of
elementary cortical dipoles D as suggested by Mattout et al.
(2005), but here with a different approach. Following these
authors steps, W may also be thresholded to discriminate between
active and non-active elementary dipoles. We define ΓA (resp.
ΓNA) the set of active (resp. non-active) elementary sources.

A K-means classifier with random initialization is applied to the
W map (with K=2 classes) to discriminate between ΓA and ΓNA.
Finally, the elementary current dipoles belonging to ΓA yield the
optimal image support DMiMS obtained from the MiMS multi-
resolution image model selection.

The MiMS image support may be naturally coupled to the
corresponding activation probabilities in W to inform any imaging
estimator of neural currents. We exemplify this paired estimation of
neural currents with the MiMS WMNE estimate of neural currents,
ĴMiMS:

ĴMiMS ¼ Gt
MiMSðGMiMSGt

MiMS þ kW'1
MiMSÞ

'1B; ð14Þ

where GMiMS is the gain matrix of the set of elemental dipoles in
DMiMS;

WMiMS ¼ fW ðiÞ; iaDMiMSg; ð15Þ

and λ takes the optimal value in the least GCV-error sense as
defined in (8).
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Results

The performances of the MiMS procedure were extensively
evaluated with Monte-Carlo experiments on the influence of the
number and size of active brain regions. Sensitivity to increasing
noise levels was also evaluated. This section closes with the
evaluation of MiMS and MiMS WMNE on a real MEG data
set.

Data processing, forward modelling and visualization were
developed with BrainStorm in a spherical head geometry using the
151-channel whole-head MEG array of axial gradiometers from the
CTF Omega system from VSM MedTech (Coquitlam, BC,
Canada).

Let us first begin with an illustrative example of the MiMS
procedure.

The MiMS illustrated

Three 10 cm2 brain regions were virtually activated with a
uniform current distribution as displayed Fig. 6a. Independent and
identically-distributed (IID) Gaussian noise samples with zero
mean were added to the simulated data. The noise level was set to
20% as defined by the ratio between the Frobenius norm of the
noise across MEG sensors to the Frobenius norm of the signal due
to the activated brain regions.

Fig. 3 plots the GCV error εk obtained from Eq. (10) versus
spatial resolution k during an exhaustive exploration of all spatial
resolutions with the MiMS.

The empirical probability map W is obtained from Eq. (12) and
is shown Fig. 4.

Active elemental dipoles in D are selected from this map (see A
posteriori classification of elementary sources and estimation of

neural currents section and Fig. 5), yielding the MiMS image sup-
portDMiMS (Fig. 6c) which when combined withWmay be used as
a prior to any imaging estimation of the amplitudes of the elemental
dipoles in the model, as illustrated Fig. 6d with the MiMS WMNE
approach.

Monte-Carlo experiments

Evaluation procedure
Numerical Monte-Carlo simulations were performed to evalu-

ate the multiresolution imaging approach respectively to the effects
of the size and number of active regions.

250 Monte-Carlo trials were generated by simulating the simul-
taneous activation of 1 and 3 regions with identical surfaces areas
ranging from 1 to 10 cm2. Dipole amplitudes within a simulated
active area were adjusted to ensure a surface current density of
100 pAm.mm−2. Additive Gaussian noise was applied to the
modelled data, again with a noise level of 20%.

L=30 – see Appendix B for a discussion on the choice of this
value – samples of random initial conditions were used to obtain the
MiMS image models. The MiMS procedure was programmed with
Matlab and took about 1 min per Monte-Carlo trial on a conven-
tional workstation (3 GHz-Pentium4, 1 GB RAM) for a cortical
tessellation with 10,000 vertices.

Detection performances of image models: number and extension of
active regions, and influence of noise

The performances of the MiMS were assessed with Receiver
Operating Characteristics (ROC) analysis (Kay, 1993; Metz, 1998;
Grova et al., 2006) and complemented with those from MiMS
WMNE. The corresponding estimated source maps were thre-
sholded at variable cutoff values β, to obtain the sample estimates

Fig. 3. GCVerror εk vs. spatial resolution k in semilog scale. A selection of image source modelsMk are shown with their associated cortical parcels. Here, the
global minimum of εk is reached for k⁎=62 and the corresponding imaging model Mk* is magnified in the green boxplot.
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of the threshold-dependent sensitivity Se(β ) and specificity Sp(β )
of the source estimate following the conventional definitions:

Se bð Þ ¼ TPðbÞ
TPðbÞ þ FNðbÞ

Sp bð Þ ¼ TNðbÞ
TNðbÞ þ FPðbÞ ; ð16Þ

where TP, FP, TN and FN are the amounts of true positive, false
positive, true negative and false negative detection rates for a cutoff
value of β, respectively (see Appendix A for details).

ROC curves were obtained by plotting Se(β ) against 1' Sp(β ).
The area under the curve (AUC) was computed for each ROC curve
as an index of the specificity-sensitivity compromise of the corres-
ponding source models. Figs. 7 and 8 display the AUC indices from
the Monte-Carlo trials when 1 and 3 regions are simultaneously
active respectively.

Results show that the performances of conventional WMNE
degrade with the increasing number of active regional sources and
also with increasing surface areas, while the MiMS and MiMS

WMNE yield significantly better performances (pb0.01, Kolmo-
gorov–Smirnov test).

To study the specific influence of noise in the data on the
detection performances of the image models, simulations of 50
source sets of 3 active 10 cm2 regions were run at various noise
levels: 0%, 5%, 10%, 15% and 20%. Fig. 9 plots the corresponding
AUC against noise levels for 3 image models: WMNE, MiMS and
MiMS WMNE.

The conventional WMNE model was clearly outperformed by
the MiMS and the MiMS WMNE image models in terms of AUC
values (pb0.01, Kolmogorov–Smirnov test), which were always
found above 0.85 for these latter, even at high noise levels.

In conclusion, the MiMS source models are robust to multiple
simultaneous activations of brain regions over a broad range of
surface areas. The image model is resistant to increasing noise
levels, as no significant degradation of the performances was
noticed up to 20% noise in the data.

On the estimation of the spatial extent of activations
We further questioned whether the MiMS-based image models

would recover the spatial extent of the activated brain regions as this
would yield a crucial functional marker of major brain processes
such as e.g. plasticity and learning. The surface areas sampled by
the MiMS image supportsDMiMS were directly compared to the true
simulated surface areas of the Monte-Carlo experiments with one
activated source, as described in the Monte-Carlo experiments
section with 20% noise level. For the specific case of MiMS
WMNE, the source amplitudes were thresholded using the cut-off
value that produced the best compromise in sensitivity and spe-
cificity as revealed from the ROC analysis curves in the Evaluation
procedure section.

Fig. 10 shows the plots of the true vs. estimated spatial extent of
activated regions. Equations from linear regression models indicate
that the MiMS strongly overestimates the spatial extent of activated
sources, though with very significantly-correlated estimates
(r=0.59, pb10−10). Correlation improves dramatically with the
coupled MiMS WMNE approach (r=0.74, pb10−10) with a strong
decrease of the overestimation of the true spatial extent of
activations.

Sensitivity of the estimation of the active surface extent to noise
was also investigated by Monte-Carlo simulations of 3 10 cm2

regions with noise levels ranging up to 20% of the signal level, as in
the Detection performances of image models: number and exten-
sion of active regions, and influence of noise section. Fig. 11 shows

Fig. 5. Active vs. non-active source classification. Histogram of the
empirical probability values in W. A two-class K-means algorithm yields a
threshold (here 0.9) to discriminate between active and non-active elemental
sources.

Fig. 4. The probabilistic mapW illustrated. Multiple samples of optimal modelsMk* obtained from the empirical posterior evaluation of model uncertainty (top
row). The normalized cumulative accuracy scores yield W, the map of empirical probability of activation w̄i for every elemental dipole di∈D (bottom row).
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the average total surface area detected as being activated with the
MiMS image model against increasing noise level. Note that the
true total active surface areas extend over 30 cm2.

Results confirm the rapid tendency of the MiMS approach
toward overestimation of the active surface area with increasing
noise levels. We note however that the estimation is unbiased when
no noise is added to the data.

Illustrative example on real data: somaesthetic mapping of hand
fingers

Somaesthetic mapping of limbs and fingers has been widely
investigated using MEG (see e.g. Kakigi et al., 2000). The early
(tb40 ms) neural responses following stimulation of hand fingers
for instance, follow a somatotopic organization along the posterior
bank of the central sulcus with the thumb area being wider, more
lateral and inferior than the other fingers’ (Penfield and Boldrey,

Fig. 7. Simulation of a single active region with increasing surface area (1, 3,
5, 7.5 and 10 cm2). AUC statistics for the WMNE (black), MiMS (gray) and
the MiMS WMNE (white) source models. The boxplots show the AUC
values for the first quartile, median, last quartile, first and last deciles of
AUC indices from the Monte-Carlo samples.

Fig. 8. Simulation of 3 activated clusters with increasing surface areas. See
Fig. 7 for details on the display.

Fig. 6. Conventional WMNE vs. MiMSWMNE. (a) The original set of 3 activated parcels of 10 cm2 each; (b) WMNE image estimate (in normalized units); (c)
the optimal MiMS image support DMiMS and (d) the corresponding MiMS WMNE estimation of neural currents (also in normalized units).
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1937). Most somatotopic source models were restricted to ECD
source models so far. Data from animal models and previous
multiresolution imaging models (David and Garnero, 2002)
however indicate that even though there is indeed some soma-
totopic organization of finger areas, these latter might be larger than
expected and even overlap considerably. These findings suggest
that a distributed imaging model of the primary somatotopic neural
responses following stimulation of hand fingers would be more
relevant than the possibly misleading focal representation of the
ECD.

Data from a single subject was obtained following the random
stimulation of his hand fingers with the delivery of small electric
shocks below motor threshold (see Meunier et al., 2001 for a
detailed description of the paradigm). Source analysis was obtained
from the coupled MiMS WMNE model over a 20-ms data segment
centered at about 40 ms after stimulus delivery and with the same
source amplitude cut-off value as in the On the estimation of the
spatial extent of activations section.

Results are summarized in Fig. 12 and indeed reveal a soma-
totopic organization for finger responses, with as expected, a large
degree of overlap. The respective surface areas for each finger

were: 46 cm2 (thumb), 29 cm2 (index), 34 cm2 (middle) and
36 cm2 (little), respectively (no stimulation was delivered to the 4th
finger).

Discussion and conclusions

We have introduced a new multiresolution approach to the MEG
inverse problem. The procedure operates successive designs, eval-
uations and selections of piecewise image models as spatial
resolution increases. The optimal image source model is selected
retrospectively in the least GCV-error sense. Model uncertainty is
evaluated empirically through the sampling of multiple initial
conditions, i.e. equivalent image models at the coarsest spatial
resolution.

Fig. 10. True vs. estimates of the spatial extent of active surface regions, from 250Monte-Carlo simulations of a single active region of variable size and location.
Plots show the estimated surface extent obtained from MiMS (left) and MiMS WMNE (right) against the true values. The solid line in each plot is a linear fit to
the Monte-Carlo simulations and suggest significant correlation with true values for both image models, with limited overestimation from the MiMS WMNE
approach (see equations of the regression lines).

Fig. 9. Activation of multiple source regions: effects of increasing noise
level. AUC boxplots from 50 simulated source sets of 3 10 cm2 active
regions with increasing noise levels. WMNE (black), MiMS (gray) and
MiMS WMNE (white).

Fig. 11. Evaluation of total activated surface area: influence of noise. The
solid line (resp. the gray band) is the average (resp. standard error) of total
activated surface area recovered from Monte-Carlo data simulations with 3
active regions of 10 cm2 each. Noise level was increased from 0% (no noise)
to 20%.
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This approach yields a map W of empirical probability of
activation for all elementary dipoles that spatially sample the
cortical manifold. This map can be thresholded to select the most
significant dipole sources, which conducts to the final multi-
resolution image model selection (MiMS). This latter may be
coupled to an image estimate of the currents which will use the
coefficients from the thresholded W map as intrinsic priors. We
have exemplified this approach with the MiMS WMNE inverse
model.

We emphasise that any other estimator of distributed source
amplitudes may also be coupled to the source selection procedure.
This is of particular interest when these latter are computationally
demanding and result as being practically untractable when run on
a high-resolution tessellations of the cortical envelope.

The MiMS procedure keeps the number of unknown free para-
meters constant at all spatial resolutions, which was set to the
number of instantaneous data (i.e. on the order of 200). This was
achieved by modelling each cortical parcel in the model by a
4th-order current multipolar expansion. We suggest that the cortical
parcels of the piecewise image model can be obtained from priors of
multiple anatomical and/or functional origins. This was illustrated
by the usage of an atlas of Brodmann areas that was co-registered to
the subject’s anatomy using affine transformation. This information
was complemented by the prior that the distribution of the parcel
surface areas should be homogeneous at all spatial resolutions, with
limited variations of curvature within each parcel. We show that
automatic detection of crest lines along the gyral crowns yield
efficient parcellation guidelines in that respect.

Fig. 12. Early somatotopic cortical responses of hand fingers. (a) Color-encoding of the four fingers stimulated in the study, as used in subsequent plots. (b)
Butterfly time plots of the MEG time series and corresponding sensor topography of the respective brain responses following finger stimulation. Frames indicate
the respective latencies on which source analysis was computed. (c) The corresponding mapsW of probability-like activation coefficients. (d) The MiMS image
model and (e) the coupled MiMSWMNE current estimates. (f) Estimation of the respective spatial extent of the cortical responses; with (g) superposition of the
corresponding contours.
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The MiMS procedure is tractable and reasonably fast (about
1 min using a 10,0000-node cortical tessellation and for a data
segment of arbitrary length).

Results from extensive Monte-Carlo simulations show good
performances in terms of detection accuracy for the localization of
up to 3 simultaneous activated regions of size up to 10 cm2. The
MiMS estimate is also robust to realistic noise levels in the data.
The MiMS strongly overestimates the active surface area, but we
have shown this effect can be dramatically reduced once the
MiMS is coupled to an estimate of currents (as with the MiMS
WMNE inverse model). The strong qualitative correlation with the
true surface extent of active regions positively suggests that this
parameter of brain activation may be extracted from MEG data in
e.g. longitudinal studies.

This was exemplified on the data from the somatotopic para-
digm, where the thumb’s primary area was found being larger
than the other fingers’. This result remains qualitative though and
needs to be confirmed by the estimation of error bounds on the
borders of activated regions which could readily be achieved by
e.g. bootstrap approaches (Darvas et al., 2005) and extended to a
group of subjects in a dedicated study.

Recent developments of multipole models for electrical
potentials open perspectives for the application of the MiMS
approach to EEG. Future developments might also consider an
optimal approach to the analysis of long data segments where
activations are likely to unfold over multiple brain areas
which may not all be correctly detected from the W map.
The exhaustive estimation of MiMS at every time instant may
be advantageously accelerated by considering the auto-
correlation of MEG and EEG signals in the very estimation
process.
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Appendix A. ROC analysis

Let i be the index of an elementary current dipole in the global
image support D defined on the cortical manifold Γ. The MiMS
yields a map W of empirical activation probabilities w̄i, and once
coupled to any estimator of dipole magnitudes as with the MiMS
WMNE approach produces an estimate of the distributed local
current density Ĵi.

In both situations, ROC analysis estimates the variation of
sensitivity and specificity when either maps W or Ĵ are thresholded
with a variable cut-off value, β. Sensitivity and specificity are
defined from the enumeration of true/false positives/negatives in
the thresholded normalized map W or Ĵ (see Eq. (16)), generically
denoted E={ei, i∈D}.

By definition, dipole di is:

(1) a TP, if it is effectively active and ei≥β;
(2) a FP if it is effectively inactive and ei≥β;
(3) a TN if it is effectively inactive and eibβ;
(4) a FN if it is effectively active and eibβ.

Appendix B. Model uncertainty with efficient sampling of
initial conditions

We suggest the uncertainty on the optimal model in the least
GCV-error sense be sampled by considering multiple instances of
the initial image model M1 at the coarsest resolution. Hence, we
need to determine how many samples should be considered to
approach an exact estimation of model uncertainty.

We have used the data from the Monte-Carlo experiments
detailed in the Evaluation procedure section to achieve the
empirical estimation of L, by measuring the evolution of normalized
AUC performances with an increasing number ofM1 samples. The
results are summarized in Fig. B for L ranging from 1 to 100.

We verified that L=30 is indeed a representative value where
the AUC performances reach convergence.
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