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Abstract Natural texture of an object is an important

cue for recognition. In real conditions, the incidence angle

of light on natural textures leads to a complex pattern of

micro-shading that modifies 3D rendering of surfaces.

Little is known about visual processing of material

properties. The present work aims to study the coding of

natural textures by the neurons of area V4 of the awake

macaque monkey. We used patches of natural textures

issued from the CURET database and illuminated with

two or three different angles with their corresponding

controls (scrambled Fourier phase). We recorded the

responses of V4 neurons to stimuli flashed in their

receptive fields (RFs) while the macaques performed a

simple fixation task. We show that a large majority of V4

neurons responded to texture patches with a strong

modulation across stimuli. The analysis of those responses

indicate that V4 neurons integrate first and second order

parameters in the image (mean luminance, SNR, and

energy), which may be used to achieve texture clustering

in a multidimensional space. This clustering was compa-

rable to that of a pyramid of Gabor filters and was not

affected by illumination angles. Altogether, these results

suggest that the V4 neuronal population acts as a set of

filters able to classify textures independently of illumi-

nation angle. We conclude that area V4 contains

mechanisms that are sensitive to the aspect of textured

surfaces, even in an environment where illumination

changes continuously.
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Introduction

Almost every object has a surface covered with a distinc-

tive texture. In addition to 3D geometry, humans can use

this important material property to recognize objects or

classify them (Humphrey et al. 1994; Price and Humphreys

1989; Rossion and Pourtois 2004). Texture is characterized

by the repetitive occurrence of a pattern that may appear

more or less regular at different scales. This important cue

reflects the physical composition of the objects and the

characteristics of their surface. The texture that covers any

object has a 3D aspect that can be more (rough) or less

(smooth) pronounced. In real conditions, illumination casts

a micro-shading pattern on the object surface that depends

on its texture. When the illumination angle varies, the

micro-shading pattern is modified, leading to an important

change in the global aspect of the object surface. Despite

these marked visual differences, it is still possible to

identify material properties of real objects in a visual scene.
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Humans can even recognize natural textures on 2D pictures

of objects that have been taken under various lighting

conditions.

The results of several neurophysiological studies in the

primate visual system show that texture difference can be

used as a cue for objects segmentation (Lamme 1995), or

boundaries detection (von der Heydt et al. 1984). How-

ever, virtually nothing is known about neuronal processes

that underlie recognition of material properties, even less

in different lighting environments. The ventral visual

pathway in the primate cortex is devoted to object rec-

ognition but it is relatively unclear at which level the

information concerning material properties is extracted.

Area V4 is likely to be crucial for texture encoding since

several studies have identified deficits in texture seg-

mentation following lesions of macaque area V4 (Schiller

1993; De Weerd et al. 1996; Merigan 1996). V4 neurons

are selective to orientation, length, and width of simple

bars (Desimone and Schein 1987), but elementary con-

stituents of textures (textons) are more complex than

those simple attributes (Julesz and Schumer 1981). It has

been shown that V4 neurons also respond to complex

shapes (Kobatake and Tanaka 1994), non-Cartesian grat-

ings (Gallant et al. 1996; Hegde and VanEssen 2007) and

complex boundary features at specific locations within

larger shapes (Pasupathy and Connor 1999, 2001). Con-

sequently, textons should efficiently stimulate V4

receptive fields (RFs) that have complex inner structure

(Pollen et al. 2002). Finally, V4 is a major source of

projections to the inferotemporal cortex where it has been

recently shown that neurons are selective to texture-

defined gradients (Liu et al. 2004). In addition, one study

by Hanazawa and Komatsu (2001) showed that V4 neu-

rons are selective to the gradient of illumination and

the density and size of artificial texture elements that

are regularly spaced. The question remains as to how

complex features could be integrated as elementary

components of textures and combined by the visual sys-

tem to characterize the material properties of an object,

even with regularly changing illumination conditions.

The aim of the present study was to examine the neu-

ronal encoding of natural textures in area V4 of the awake

macaque monkey. We used a large set of stimuli repre-

senting 2D pictures of textures illuminated with different

angles. Our goal was twofold: first, to determine if the V4

neuronal population is selective enough to code for natural

texture classification; second, to determine if this classifi-

cation is invariant to lighting angles. Our set of stimuli was

chosen to allow a comparison with computational studies

that have designed texture classifiers. Similarly, we show

that the V4 neurons population resembles a set of filters

able to classify textures independently from illumination

angle.

Methods

Single-cell recording

Single-cell activity was recorded in two adult rhesus

monkeys, one female (M1) and one male (M2), weighing 3

and 6 kg, respectively. A first surgery, performed under

general anesthesia and sterile conditions, consisted of

implanting a head post (CRIST�). A pain reliever (Keto-

fen, 20 mg/kg) and systemic antibiotics were administrated

just before the surgery started. Induction of anesthesia was

performed by an injection of ketamine (16 mg/kg IM).

Deeper anesthesia was achieved with a mixture of alpha-

dolone/alphaxolone (Saffan, 15 mg/kg/h IV, rate adjusted

if required). A recording chamber (CRIST�) was implan-

ted during a second surgery, which was performed under

the same conditions. In addition, corticoids were injected

(Solumedrol, 1 mg/kg, IM) to prevent brain edema. During

training and recording sessions the animals were seated in a

primate chair, with their head restrained, in front of a

computer monitor at a distance of 57 cm. An ISCAN

infrared eye-tracking system (120 Hz) monitored eye

positions by tracking the corneal reflection of a focused

infrared LED through a CCTV camera with a 250-mm lens.

We recorded V4 neurons in the lower left parafoveal

representation of the visual field. The location of the

recording chamber (2 cm diameter) over the prelunate

gyrus was based on stereotaxic coordinates as mentioned in

Girard et al. (2002), and on skull landmarks and sulci

positions that were perceptible during the surgery, through

the intact dura. Single cell activity was recorded using

tungsten in glass-coated electrodes with impedances of

0.5–1.5 MX (Trec�). Their position was controlled with a

stepping motor microdrive (Trec�). The electrical signal

was amplified and filtered and single unit activity was

recorded on-line with a spike sorting software (Alpha-

Omega MSD�) and oscilloscope.

For each isolated cell, the coarse location of the RF was

first determined with dark, light or colored hand-moved

bars while the animal was fixating a central spot. In order

to roughly map out the RF of the cells, we used a com-

puter-controlled sequence of dark and light 1� squares

briefly flashed (25 ms) with a 25 ms inter-stimulus inter-

val. Each square was presented ten times following a

pseudo-random order, in the left inferior quadrant of the

visual field within a 12� square region centered on five

degrees eccentricity, where we expected to find the RFs. In

some cases, the size and the position of the black and white

squares were modified in order to refine the RF plotting.

Using forward correlation of spike times with stimulus

times, it was possible to determine the RF of the neuron

within a few minutes. The classical RF of the cell was

delineated as a region in which reliable excitatory

110 Exp Brain Res (2008) 189:109–120

123



responses could be evoked by either black and/or white

squares. We then placed the stimuli (texture patches) at the

center of the RF. RF size was estimated as a function

of eccentricity from Gattass et al. (1988) formula

(size = 1� + 0.625X eccentricity). After each recording

session, we used the RF centers to draw retinotopic maps of

the recorded regions for both monkeys. We superimposed

these maps on the drawings of sulcal landmarks that were

estimated during surgery (see suppl. Fig. A).

Stimuli and protocol

Stimuli were 2D patches of natural texture images from the

columbia-utrecht reflectance and texture (CUReT) data-

base. A detailed description of this database can be found

at http://www1.cs.columbia.edu/CAVE/software/curet/

index.php. The stimuli that we selected from the database

were natural textures photographed in frontal view with a

light source coming from the right side. For each texture,

we chose two (or three) patches illuminated with incidence

angles of 22.5, 45, (and 67.5�) that we termed lighting

angles L1, L2, (and L3). Our stimuli were squares (2–5

square degrees) cut at the center of these pictures, con-

verted in 256 gray-levels images. Stimuli size was chosen

among four predefined sets (2, 3, 4, and 5 degrees) to be

included in the interval [0.5–1] * RF estimated size. The

stimuli were always completely contained in the RF (cor-

responding in average to 64% of the RF). For the sake of

readability, we indicated the name and/or the number of the

texture patches (this number being used in figures).

In a first set of stimuli (set A), we used 41 textures

illuminated from angles L1 and L2 (total 82 stimuli). We

designed a second set of stimuli (set B) including 12 tex-

tures from the set A, and adding the corresponding

exemplars illuminated with L3 (Fig. 1). For each stimulus,

we designed a control image (coined scrambled-phase)

with the same power spectrum but random redistribution of

phases (Fig. 1b). Hence, the set B contained 72 different

stimuli consisting in 12 patches * 3 lighting angles * 2

phase spectra (original vs. scrambled). The stimuli were

gamma corrected on a 2100 CRT monitor (Iiyama vision

master pro512) placed 57 cm in front of the eyes of the

monkeys. Mean luminance of the stimuli was 24.15 cd/m2

and background luminance was 11.5 cd/m2.

CORTEX software (courtesy of NIMH) controlled

behavior, stimulus presentation and data acquisition. Dur-

ing each trial, the monkey was required to maintain fixation

on a 0.1 degree gray central spot for a variable delay (400–

600 ms) within a 2-degree square window, before a stim-

ulus was flashed for 250 ms. The trial was completed after

a second random duration fixation (200–300 ms) without

the stimulus. Trials completed without breaking fixation

were rewarded with a drop of water. The inter stimulus

interval between successive correct trials ranged from 600

to 900 ms. Stimuli were pseudo-randomly selected and

were presented 5–10 times each. The monkeys were

weighted every working day and additional water was

given if needed. All animal procedures complied with

guidelines of the European Ethics Committee on Use and

Care of Animals.

Texture patches analysis

The determination of relevant parameters to fully describe

a texture is a wide computational field. A review of this

topic is beyond the scope of this paper. Among four major

categories of methods for texture analysis (statistical,

geometrical, model-based, and signal processing), we

chose the statistical method that describes the relationships

between one pixel and its neighbors.

In this method, first-order statistics describe the prop-

erties of individual values of pixels in the picture, ignoring

their relative spatial locations. We computed several first-

order parameters such as mean and variance of luminance,

root mean square (RMS) contrast, and signal to noise ratio

(SNR) from the gray-levels histogram.

Fig. 1 a The 12 natural textures

belonging to both sets of stimuli

(set A and set B). Illumination

angle displayed here is 22.5�
(L1). Stimulus number is

indicated below each texture

patch. b Two textures patches

(#6 and #23) illuminated with

the three different angles from

the frontal axis (L1 = 22.5�,

L2 = 45�, and L3 = 67.5�) and

their corresponding scrambled-

phase patches
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Second and higher-order statistics describe the proper-

ties of two or more pixels values at a specific location. A

widely used second-order method relies on co-occurrence

matrices that contain the number of occurrences of two

gray-level values, separated by a given pixel distance in a

given direction in the image (Haralick et al. 1973). From

these matrices, one can compute up to 14 parameters that

characterize roughness, granularity or homogeneity of the

textures. We focused on four of second-order parameters—

energy, inertia, entropy, and homogeneity, which we

computed across four different orientations (0�, 45�, 90�,

and 135�). As our textures are mostly isotropic, second

order parameters varied little across orientations. Table 1

of supplementary material summarizes the formulas used

to compute first and second order parameters. Except

energy, first and second order parameters do not change

significantly with phase scrambling (ANOVA, P \ 0.05).

In set B, mean and SNR statistically decrease with illu-

mination angle (IA, P = 3.4 9 10-5 and P = 0.007),

whereas RMS increases with IA (P = 0.029). Luminance

variance and second order parameters do not vary with IA.

One of the major fields of image analysis consists in

building algorithms that achieve texture classification

(Hayman et al. 2004; Rao and Lohse 1996; Varma and

Zisserman 2003). To classify our stimuli, we used a mul-

tiscale 2D Gabor filters bank, keeping the ratio between

size and frequency of the filters constant. The 12 filters (six

even and six odd-symmetric) had frequencies increasing

with one octave step from 0.5 to 16 cycles per degree. For

each filter, we used eight orientations from 0 to 157.5�,

evenly increasing by 22.5�. Each texture was convolved

with each individual filter. We then computed the energy of

each convolution (square root of the squared mean filtered

image) and used this value in the multidimensional analysis

(see below).

Data analysis

We recorded 148 V4 neurons in the right hemisphere of

two monkeys, 100 in monkey M1 and 48 in monkey M2.

Response rates were computed during a period ranging

from 50 to 300 ms after stimulus onset. The reference

period started during the fixation period, 400 ms before the

onset of the stimulus, and lasted 250 ms. All analyses were

performed on both the raw activity and on the discharge

rates on which we subtracted the baseline activity (spon-

taneous discharge rate computed during the reference

period). As the results were consistent, only the results

obtained with the raw discharge rates are described in the

paper.

We used a non-parametric Mann–Whitney test to select

the neurons that presented a significant difference between

the response to patches and the baseline activity. Then, we

used a Kruskal–Wallis test to compare single cells response

across textures. Finally, the responses of the neurons were

analyzed with two complementary multivariate exploratory

technique. First, we produced hierarchical cluster dendro-

grams (using Ward method) on standardized responses

(Sary et al. 2004). Second, we computed Euclidian distance

response matrices for all possible image comparisons. We

used multidimensional scaling (MDS) final configurations

to represent these distances in a low-dimensional space

(Young and Yamane 1992). We applied MDS to V4 cells

responses and to the energies computed from the multiscale

2D Gabor filters bank. We used scree plot (stress against

the number of dimensions) analysis to compute the

dimensionality of the MDS configurations (Kruskal and

Wish 1978). We then compared the two distances matrices

(cells response and filters energy) with a Procrustes rotation

procedure, which consists in translating, dilating, and

rotating one matrix to find the best fit with the other one.

We used a statistical test (PROTEST) based on a Monte

Carlo simulation (Matlab code courtesy of Pedro Peres-

Neto, Dept. of Zoology, University of Toronto) to check

that the congruence between the two distance matrices was

not obtained by chance (Jackson 1995).

Results

Neuronal database

We recorded 148 neurons (52 with set A and 96 with set B)

in the right dorsal V4. Accordingly, the RFs were located

in the inferior left quadrant of the visual field. The average

eccentricity was 5.6� with a range of 1.4� to 11.3�. A vast

majority of neurons (97%, n = 144) had a significant

response to stimulus presentation compared to the baseline

activity (Mann–Whitney test, P \ 0.05). These 144

responsive neurons—97 in monkey M1 and 47 in monkey

M2—were kept for subsequent analysis (51 with set A and

93 with set B).

Texture selectivity

We explored single cell response patterns to the 41 textures

included in set A. Texture stimuli were very efficient in

driving V4 neurons. The responses of 49 neurons (97%)

were significantly modulated according to natural texture

identity (Kruskal–Wallis, P \ 0.05). We called these neu-

rons ‘‘texture selective (TS) neurons’’. Figure 2 illustrates

the response pattern of a typical TS neuron. When com-

pared to the baseline activity, this neuron had a significant

response to 38 textures (only responses to textures #07, #34,

and #41 are not significant). Similarly, the majority of TS

neurons (70%, n = 34) responded significantly to at least
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20 textures among the 41. Seven cells were responsive to

the 41 textures of set A. The narrowest response pattern was

observed for two cells that had significant responses to five

textures only.

The typical example of Fig. 2 shows a response pattern

with a strong response modulation across textures. In order

to describe this modulation, we computed the selectivity

index and sparseness index for each TS neuron. Selectivity

index (SI) is [Rmax - Rmin]/[Rmax + Rmin], where Rmin is

the minimal response and Rmax the maximal response.

Sparseness index (SpI) is [Ri=1,n(Ri/n)]2/[Ri=1,n(Ri
2/n)],

where Ri is the mean response to texture i and n = 41. A

SpI value of 1.00 indicates similar responses to all stimuli

(Rolls and Tovee 1995). Figure 3 shows a scatter plot and

distribution histograms for the SI and SpI computed on TS

population. The SI histogram shows that TS neurons

present a strong selectivity for natural textures. The SpI

histogram shows that TS neurons significantly respond to

many natural textures (large bandwidth); the sparseness of

the representation of the 41 natural textures had an average

of 0.81 across the TS population. Hence, typical V4 neu-

rons have a marked preference for a wide range of textures

(see example in Fig. 2). In order to check that texture

preference was not due to a specific position of local cues

(e.g., leaf vein in #23), we designed a control test in which

the whole set of stimuli was shifted by 1� within the RF.

Figure 4a shows an example of a neuron among the ten

recorded with this control. This plot clearly shows that

texture selectivity is preserved in spite of the shift of the

stimuli in the RF. The ranking of texture preference was

confirmed among the population of ten neurons (Spearman

rank, r = 0.881, P \ 0.001; see Fig. 4b).

In order to go beyond a mere qualitative description of

textures that cannot explain the data, we searched for sig-

nificant linear regression between statistical parameters

of the patches (first order and second order parameters listed

in Table 1 of supplementary material) and single cells

responses. Only 18, 14, 22, and 16% of TS cells responses

were correlated to mean, variance, RMS, and SNR,

respectively; and less than 18% were correlated to second-

order parameters such as energy, entropy, inertia, and

homogeneity (R2 [ 0.15, P \ 0.001). These results show

that a single parameter does not account for the response

pattern of the cells. Hence, we used multivariate exploratory

techniques (hierarchical cluster analysis and MDS) to

reveal potential clusters of stimuli that evoke similar pop-

ulation responses. Figure 5 shows the dendrogram in which

each terminal (horizontal) branch of the tree represents the

Fig. 2 Example of a V4 neuron

selective to natural textures (TS

neuron). Each histogram
represents the responses to a

given texture. Illumination

angles L1 and L2 are pooled

together. All trials are lined-up

with the onset of the stimulus.

The gray bar corresponds to the

ON period of the stimulus

(250 ms duration). The bin

width of the histograms is

25 ms. The number in the

upper-left corner of each PSTH

indicates the texture patch

number
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population response to one stimulus. A small linkage dis-

tance between two stimuli indicates similar responses. The

tree splits into two distinct clusters (A and B) at its highest

level. The A branch contains two clusters (A1 and A2)

grouping, respectively, 26 and 20 stimuli. The B branch

contains two clusters: B1 containing 20 stimuli and B2

containing 16 stimuli. Textures belonging to clusters A and

B are respectively, heterogeneous and homogeneous as they

differ in variance of luminance (mean variance = 0.027

and 0.008, respectively, ANOVA P = 0.000007). The

second level contains clusters of textures that differ

according to the mean luminance. Textures in A1 and B2

have a similar high range of luminance values (mean 0.49

and 0.48, respectively, P = 0.986) while textures in A2 and

B1 have a similar range of lower luminance (mean 0.23

and 0.28, P = 0.483). Moreover, mean luminance in A1

and B2 significantly differs from that in A2 and B1

(P = 9.04 9 10-16). Second order parameters are not dif-

ferent across clusters (P [ 0.05). Finally, there is a marked

tendency to observe the same texture illuminated with L1

and L2 gathered in the same cluster: 35 pairs of L1–L2

textures out of 41 belong to the same cluster. The per-

centage of paired L1-L2 textures is 85% in A1, 90% in A2,

70% in B1, and 100% in B2. Within these clusters, the

members of 15 pairs of stimuli were the closest neighbors.

We also performed a MDS analysis (see suppl. Fig. B).

The stress value (0.13) and elbow on the scree plot (not

shown) restricted the analysis to three dimensions. Resid-

ual sum of squares (RSQ) values indicated that this 3D

configuration accounted for 89% of the variance (1D and

2D solutions accounted for 64 and 83%, respectively). In

order to make a visual comparison, we reported the colors

of the clusters identified in the hierarchical cluster analysis

onto the MDS plots. Figure 6a shows that the four clusters

(A1, A2, B1, and B2) are also visible in the MDS plots.

Dimension one of the MDS is significantly correlated

(Spearman rank order correlation) with SNR (r = 0.738,

P = 1 9 10-6) and variance of luminance (r = 0.639,

P = 1 9 10-6). Other parameters are not significantly

represented in dimension one (r \ ±0.4). Dimension two

Fig. 3 TS neurons selectivity and sparseness for natural textures. SpI

of 49 TS cells are plotted in a scatter plot (open circles) as a function

of SI. The black dot represents the neuron shown in Fig. 2. Indices

distributions are shown on the top (SI) and on the right side (SpI)

Fig. 4 Position test. a Example of a TS neuron preferring texture

#45. The selectivity observed for the original position (black dots) is

preserved when the stimulus position is shifted by 1� within the RF

(open dots). Textures are ranked in descending order according to

mean responses to original position. This rank is preserved to plot the

corresponding responses to the shifted patches (open dots). b Rank

order of the population (n = 10) tested with the shifted condition. The

black curve illustrates the ranking of average normalized responses to

patches in original position. Same rank for the corresponding

responses to the shifted patches (open dots)
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exhibits a correlation with mean luminance only

(r = 0.670, P = 1 9 10-6). Dimension three is correlated

with maximum values of second order parameters

(energy max: r = 0.514, P = 1 9 10-6; entropy max:

r = 0.482, P = 4.23 9 10-6; homogeneity max: r =

0.467, P = 9.69 9 10-6).

Finally, we compared population response and energy of

convolutions. Figure 6c and d show the MDS computed

from filters output. The three dimensions solution

explained 99% of the variance with a very low stress value

(0.03). A Procrustes rotation test demonstrated that there is

a significant correlation between the neuronal response

space and the filters output space (m2 = 0.68, P \ 0.001).

Response modulation to phase scrambling

The 2D distribution of phases is crucial to determine the

visual aspect of images (Tadmor and Tolhurst 1993). If V4

cells classify textures, as suggested from MDS analysis

above, they should be sensitive to marked alterations in the

distribution of Fourier phases of texture images. We

examined the responses of 66 TS cells1 to control stimuli

that contain a random redistribution of the phases (set B,

see methods). Although they share identical spatial fre-

quency content, original and scrambled phase stimuli may

have different visual aspect. Indeed, the 3D appearance due

to micro-shading patterns disappears in scrambled phase

stimuli (cf. Fig. 1b). The neuron shown in Fig. 7a robustly

responds to texture #23 and not to its scrambled-phase

version. The Kruskal–Wallis test shows that 42% (n = 28)

of the TS cells have a significant different response

according to the phase of the stimuli (P \ 0.05). For the

majority of these cells (n = 27), the response to original

textures was stronger than to scrambled-phase textures.

Figure 7b shows the mean TS population response

according to the stimuli phase content. This plot shows that

TS population response to original textures is stronger than

the response to corresponding scrambled-phase patches.

The significance of the effect is delayed with respect to the

initial part of the response (150–300 ms, t-test, P \ 0.001).

The normalized TS population response ranked according

to single cells preference to original textures shows that

population response to the preferred original texture is

much stronger than the response to the corresponding

scrambled-phase patch, and that preference order is quite

disrupted (see Fig. 7c). However, if the response to

scrambled phase stimuli were completely independent

from the response to original stimuli, the second curve

should be flat. In fact, the gray curve shows that TS

Fig. 5 Dendrogram from the

hierarchical cluster analysis of

normalized single unit

responses to the 82 original

stimuli (41 textures 9 2

lighting angles). Each

horizontal line represents one

stimulus (texture# and IA—L1

or L2—are mentioned).

Arbitrary colors correspond to

clusters and will be used in

subsequent figures. For the sake

of readability, we represent

clusters vertically. Linkage

distances (d) are respected

1 The proportions of TS cells recorded with sets A and B are not

significantly different (chi2, P = 0.237).
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neurons rather prefer the scrambled phase stimulus corre-

sponding to the preferred original stimulus (Spearman rank

order correlation, P = 1 9 10-6; r = 0.943). These results

show that TS cells do not merely encode phase spectrum of

the texture images, though they are sensitive to alterations

in the distribution of phases.

Response modulation to illumination angle

An efficient texture coding would allow recognition in a

constantly varying visual environment, and hence should be

invariant to lighting angle. Invariance to illumination angle

(IA) was already suggested in Fig. 5 where L1 and L2 pat-

ches are very often close to each other in the dendrogram. To

assess the invariance, we searched for an illumination angle

invariant coding in the 66 TS cells recorded with set B.

Figure 8a illustrates a typical IA independent neuron. This

neuron is selective to texture #15 with a response invariant

to IA (Kruskal–Wallis, P = 0.359). We computed a mod-

ulation index (MI) on the responses to the best texture only

(see Vogels and Biederman 2002). For each cell, MI is

defined as the subtraction of the minimal response (Rmin, to

the less preferred illumination angle) from the maximal

response (Rmax, preferred illumination angle), divided by the

mean standard deviation (SD) of those responses. The for-

mula of the index is given by:

MI ¼ 2 � Rmax � Rminð Þ= SDmax þ SDminð Þ

Hence, MI of 0 indicates a complete invariance to lighting

angle, while value of 1 indicates that the difference between

the maximal and the minimal response is similar to the

mean standard deviation. The neuron illustrated in Fig. 8a

had a MI of 0.75 indicating a non-significant difference

between responses to preferred and non preferred IA. The

index distribution for the TS population is shown in Fig. 8b.

The median of MI distribution is 0.99 indicating that

modulation due to lighting angle is equivalent to the mean

standard deviation of the single cells responses. Statistical

significance of MI (Fig. 8b) shows that a vast majority of

TS cells are invariant to IA (72%, n = 48; Kruskal–Wallis,

P [ 0.05) although a subpopulation of neurons is influ-

enced by IA (n = 16, Kruskal–Wallis, P \ 0.05). As a

matter of comparison, we also computed a contrast ratio

index ([Rmax - Rmin]/[Rmax + Rmin]). As expected from

the MI distribution, the contrast ratio index shows that the

modulation is modest (median = 0.2). We also quantified

the effect of IA on heterogeneous (variance [ 0.015) and

homogeneous (variance \ 0.01) textures respectively. We

obtained two similar distributions (Mann–Whitney test,

P = 0.721), indicating that IA effect is similar for TS

neurons preferring heterogeneous vs. homogenous textures.

Figure 8c shows the rank order plot for TS population

(n = 66). There is a tendency that when a given neuron

prefers a texture illuminated with L1, the same texture

illuminated with L2 and L3 is preferred. The Spearman’s

rank correlation confirmed this observation (correlation

between L1 and L2: r = 0.942, P \ 0.001; L1 and L3:

r = 0.923, P \ 0.001; and L2 and L3: r = 0.848,

P \ 0.001), which shows that texture preference does not

depend on IA.

Fig. 6 MDS plot obtained from

single cells responses

(a dimensions 1 vs. 2, and

b dimensions 1 vs. 3). The MDS

has RSQ and stress values of

89% and 0.13.MDS plots

obtained from filters output

(c dimensions 1 vs. 2, and

d dimensions 1 vs. 3). The MDS

has RSQ and stress values of

99% and 0.03, respectively.

Colors obtained from

the clusters identified in the

dendrogram (Fig. 5) are

reported here
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Discussion

Selectivity for natural textures in V4

Many studies have shown that neurons selectivity becomes

more and more complex along the hierarchy of cortical

visual areas (i.e., Kobatake and Tanaka 1994). V4 neurons

are selective to basic attributes like orientation, length, and

width of bar stimuli, as well as orientation and spatial

frequency of gratings (Schein and Desimone 1990). Sub-

sequent studies have shown that V4 neurons are selective

to spatial complex stimuli such as non-Cartesian gratings

(Gallant et al. 1993, 1996), and contour curvatures (Pasu-

pathy and Connor 1999, 2001). These complex stimuli may

be considered as an alphabet-like set of descriptors of

boundary elements. They may also be seen as individual

elements of a textured surface (textons). Indeed, the fMRI

study by Puce et al. (1996) in humans revealed responses to

natural textures in the region of V4 (but it is difficult to

ascertain that the V4 area that they localized is the

homologous of the macaque area V4 identified in Denys

et al. 2004). Moreover, Hanazawa and Komatsu (2001)

showed that V4 neurons are selective to density and size of

points mimicking a texture-like surface.

In agreement with these studies, our results indicate that

many neurons (more than 97%) in area V4 are selective to

natural textures. Along with the broad selectivity observed

in the studies of Gallant et al. (1996) and Pasupathy and

Connor (1999), we show that a majority of V4 neurons

strongly respond to a wide range of natural textures. One

could first question whether the selectivity to texture results

from artefactual responses from a local cue such as the

border of the stimuli or, for instance, the vein of the leaf

falling in a RF singularity. One pervasive aspect of textures

is that a given pattern is more or less regularly repeated

over space. We would expect selective neuronal responses

to be invariant to shifts of a textural stimulus in the RF. We

recorded a number of neurons that kept their selectivity

when the texture is shifted in the RF. This result suggests

that V4 cells selectivity for textures does not depend on

texture position in the RF. It goes along with that of Gallant

et al. (1996) who observed position invariant responses to

Cartesian and non-Cartesian stimuli.

Fig. 7 Response modulation according to phase. a Example of a TS

neuron. Upper and lower quadrants show responses recorded with the

original- and scrambled-phase stimuli, respectively, (responses to the

three lighting angles are pooled together). b Mean discharge of TS

population to original versus scrambled phase textures. Bin width is

20 ms. The gray bar indicates the ON period of the stimuli. c Rank

order plot of the TS population as a function of original-phase texture

preference. The black curve illustrates the ranking of average

normalized responses (n = 66). Rank 1 corresponds to the preferred

texture (that could be different from cell to cell). The rank order is

preserved to plot the responses to the scrambled-phase stimuli (gray
curve)

Fig. 8 Effect of illumination angle. a V4 neuron invariant to

illumination angle (IA). Thumbnails of textures patches (#15) are

displayed at the upper left corner of each PSTH. The bin width of the

histogram is 25 ms. b Distribution of the modulation indices (MI)
computed for the preferred texture of each TS cell (n = 66). The

distribution of MI has a median value of 0.99. Filled bars indicate

non-significant effect of IA (Kruskal–Wallis, P [ 0.05). c Rank order

plot as a function of IA. The mean normalized firing rates for the L1

stimuli (IA = 22.5, solid dots) are computed for each TS cell and

ranked in descending order. Corresponding mean normalized firing

rates to L2 (IA = 45, empty squares) and L3 (IA = 67.5, empty
triangles) stimuli are plotted on the same graph. Error bars represent

the standard error of the mean (sem)
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Alone, these response patterns do not necessarily mean

that V4 neurons are indeed selective to natural textures. TS

cells could be tuned to phase or orientation of spatial fre-

quency components (see Desimone and Schein 1987), and

may exhibit a similar response to several textures because

they contain identical spatial frequency components. Since

both Fourier phase and amplitude spectra are essential to

determine the visual aspect of an image (Tadmor and

Tolhurst 1993), we designed control stimuli with a random

redistribution of Fourier phases that disrupted their visual

aspect. Original images contain important 3D cues such as

microshading patterns that disappear on scrambled-phase

controls. TS population strongly responded to original

images compared to control ones, and did not only reflect

the phase spectrum in texture images (which is identical in

original and control patches). Moreover, we showed that

neuronal selectivity remains stable in spite of stimuli’s

shifting into the RF and we provided further evidence from

the responses of V4 neurons to the same texture illumi-

nated with different angles. The illumination angle

dramatically changes the micro-shading patterns, and

consequently, the Fourier spectra of the images; despite

this, we found that most of TS cells were not significantly

modulated by IA. Altogether, these observations suggest

that TS selectivity cannot be only explained by the selec-

tivity to spatial frequency.

The coding of angle and direction of illumination

We showed that most V4 neurons response to their pre-

ferred texture is invariant to illumination angles along one

direction. This is first reflected in the MI computed from

single cells response and the fact that the texture preference

is kept for different illumination angles. Consistent with it,

the V4 neuronal population had a marked tendency to

cluster pairs of textures illuminated with different angles.

We also showed that a small proportion only of TS cells are

correlated to first or second order parameters, hence a

single image parameter invariant to IA cannot explain TS

cells invariance to IA. Most, if not all, of the papers dealing

with illumination focus on the influence of illumination

direction (and not angle) on object recognition, and lead to

controversial results. On the one hand, the structural theory

sets that object recognition does not vary according to

illumination direction because it relies on stored parts of

objects that do not contain this information (Biederman

1987; Marr and Nishihara 1978). Psychophysical studies

reinforce this theory as human subjects can easily recog-

nize faces and objects when illumination direction varies

(Nederhouser et al. 2001). Electrophysiological studies

(Vogels and Biederman 2002) show that invariance to

illumination direction may be implemented in IT cortex

and additional studies are necessary to determine whether

illumination invariance would be present in earlier stages

of the visual system (V1 and V2). On the other hand,

image-based theory proposes that illumination direction is

encoded in internal face and object representations (Poggio

and Edelman 1990; Ullman 1989). The theory is corrobo-

rated by psychophysical data showing that recognition of

faces and objects can vary with illumination (Braje 2003;

Gauthier and Tarr 1997; Troje and Bulthoff 1998). In a

single cell recording study, Hanazawa and Komatsu (2001)

showed that V4 cells tuned to illumination direction were

preferentially tuned along the vertical axis only. Our results

show that V4 single cells responses to preferred natural

textures are invariant to illumination angle. However, they

are not at odds with Hanazawa and Komatsu’s results. We

used three angles of incidence but only one direction of

illumination coming from the right side; therefore the two

results are not contradictory. Indeed, separate subpopula-

tions of V4 cells may exhibit preferred direction of

illumination, but with invariance to illumination angle

along the preferred direction. Such mechanisms would fit

the image-based theory.

Comparison with computational studies

Recent computational studies of texture classification or

recognition tend to extend models to naturalistic viewing

conditions by including surface normal variations and,

consequently, the effect of illumination direction. Leung

and Malik (2001) define a ‘‘3D dictionary of textons’’ (by

reference to Julesz’s 2D textons) based on responses of a

bank of filters. Their algorithm successfully (87%) recog-

nizes learned textures under novel lighting and viewing

conditions. Recently, several groups have developed

sophisticated algorithms (always based on filter responses)

that are more efficient than previous ones in that they also

classify patches of textures under new lighting or viewing

conditions (Hayman et al. 2004; Varma and Zisserman

2002). Our results show that V4 TS cells responses are

comparable to the output of a pyramid of Gabor filters, and

are not modulated by lighting angle, which is in agreement

with such models.

Individual components of a 2D Gabor filters bank rather

match RFs of V1 simple cells than that of V4 cells (Jones

and Palmer 1987). Consequently, the question is unan-

swered as to how texture processing follows hierarchical

steps from V1 to V4. Is there just a difference in scaling

between areas performing the same operations (V4 RFs

pooling many V1 and V2 RFs)? V1 neurons can extract

high order spatial correlations from visual textures and

could detect redundancy in retinal images (Purpura et al.

1994). Lamme (1995) showed that texture segregation

in V1 allows extraction of figure from ground. Hegde

and VanEssen (2007) recently questioned the increasing

118 Exp Brain Res (2008) 189:109–120

123



complexity of stimulus encoding from V1, V2, to V4 using

contour and grating stimuli of low or intermediate com-

plexity. This study shows that shape selectivity is far from

being hierarchically built from V1 to V4 and that stimuli

defined by internal patterns like gratings were substantially

more effective in activating V4 neurons than contour

stimuli. The difference was quantitatively much smaller in

V2. In V1, they observed a ‘‘substantial intermixing’’

between grating and contour stimuli. Moreover, Pollen

et al. (2002) demonstrate that V4 cells have a RF divided

into several subfields with similar properties such as

selectivity of orientation or same spatial frequency. Con-

sequently, texture could be encoded on the basis of

repetitive textons; each subfield of the RF corresponding to

bottom-up inputs from V1 and V2.

Conclusion

Natural textures are complex stimuli that cannot be simply

described by a simple set of parameters (Haralick et al.

1973). One can then wonder if V4 responses really reflect

textural processing per se or simply reflect differential

responses to an arbitrary complex set of stimuli. Humans

qualify or classify visual textures using many terms related

to the visual aspect of their material properties (Bhushan

et al. 1997; Rao and Lohse 1996). Many terms related to

the tactile aspect are also employed for somatosensory

classification (Picard et al. 2003). All these studies, using

MDS, showed that several dimensions are required to

explain the classification data. Our multidimensional

analyses revealed that three dimensions were sufficient to

decipher V4 population response. Two dimensions were

identified as first order parameters in the images: mean

luminance in one dimension, and SNR or variance of

luminance (both describe heterogeneity) in the second

dimension. The third dimension was correlated with second

order parameters (mainly energy) that describe the heter-

ogeneity at the second order level. Functionally, these three

dimensions could be interpreted as a counterpart of the

perceptual dimensions required for classifying textures.

We do not suggest that V4 is the only locus of texture

perception, but rather that it is included in a network

integrating texture and other cues for object recognition.

Furthermore we do not have evidence that V4 is a locus of

conscious texture perception. For example, it would be

interesting to know if the invariance to illumination angles

is even broader in an active recognition task, in which a

monkey has been trained to recognize textures under var-

ious lighting conditions. This generalization of texture

recognition to ‘‘difficult’’ illumination is plausible in V4

since neurons of this area have been demonstrated to be

prone to perceptual learning (Rainer et al. 2004).
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