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of the ventral visual pathway, with limited success. Here, we show that the association of both biolo-
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a b s t r a c t

Retinal image of surrounding objects varies tremendously due to the changes in position, size, pose,
illumination condition, background context, occlusion, noise, and non-rigid deformations. But despite
these huge variations, our visual system is able to invariantly recognize any object in just a fraction of a
second. To date, various computational models have been proposed to mimic the hierarchical processing

gically inspired network architecture and learning rule significantly improves the models' performance
when facing challenging invariant object recognition problems. Our model is an asynchronous feedfor-
ward spiking neural network. When the network is presented with natural images, the neurons in the
entry layers detect edges, and the most activated ones fire first, while neurons in higher layers are
equipped with spike timing-dependent plasticity. These neurons progressively become selective to
intermediate complexity visual features appropriate for object categorization. The model is evaluated on
3D-Object and ETH-80 datasets which are two benchmarks for invariant object recognition, and is shown
to outperform state-of-the-art models, including DeepConvNet and HMAX. This demonstrates its ability
to accurately recognize different instances of multiple object classes even under various appearance
conditions (different views, scales, tilts, and backgrounds). Several statistical analysis techniques are used
to show that our model extracts class specific and highly informative features.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Humans can effortlessly and rapidly recognize surrounding
objects [1], despite the tremendous variations in the projection of
each object on the retina [2] caused by various transformations
such as changes in object position, size, pose, illumination condi-
tion and background context [3]. This invariant recognition is
presumably handled through hierarchical processing in the so-
called ventral pathway. Such hierarchical processing starts in V1
layers, which extract simple features such as bars and edges in
different orientations [4], continues in intermediate layers such as
V2 and V4, which are responsive to more complex features [5], and
culminates in the inferior temporal cortex (IT), where the neurons
are selective to object parts or whole objects [6]. By moving from
the lower layers to the higher layers, the feature complexity,
radpisheh),
receptive field size and transformation invariance increase, in such
a way that the IT neurons can invariantly represent the objects in a
linearly separable manner [7,8].

Another amazing feature of the primates' visual system is its
high processing speed. The first wave of image-driven neuronal
responses in IT appears around 100 ms after the stimulus onset
[1,3]. Recordings from monkey IT cortex have demonstrated that
the first spikes (over a short time window of 12.5 ms), about
100 ms after the image presentation, carry accurate information
about the nature of the visual stimulus [7]. Hence, ultra-rapid
object recognition is presumably performed in a feedforward
manner [3]. Moreover, although there exist various intra- and
inter-area feedback connections in the visual cortex, some neu-
rophysiological [9,10,3] and theoretical [11] studies have also
suggested that the feedforward information is usually sufficient for
invariant object categorization.

Appealed by the impressive speed and performance of the
primates' visual system, computer vision scientists have long tried
to “copy” it. So far, it is mostly the architecture of the visual system
that has been mimicked. For instance, using hierarchical
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feedforward networks with restricted receptive fields, like in the
brain, has been proven useful [12–17]. In comparison, the way that
biological visual systems learn the appropriate features has
attracted much less attention. All the above-mentioned approa-
ches somehow use non biologically plausible learning rules. Yet
the ability of the visual cortex to wire itself, mostly in an unsu-
pervised manner, is remarkable [18,19].

Here, we propose that adding bio-inspired learning to bio-
inspired architectures could improve the models' behavior. To this
end, we focused on a particular form of synaptic plasticity known
as spike timing-dependent plasticity (STDP), which has been
observed in the mammalian visual cortex [20,21]. Briefly, STDP
reinforces the connections with afferents that significantly con-
tributed to make a neuron fire, while it depresses the others [22].
A recent psychophysical study provided some indirect evidence for
this form of plasticity in the human visual cortex [23].

In an earlier study [24], it is shown that a combination of a
temporal coding scheme – where in the entry layer of a spiking
neural network the most strongly activated neurons fire first – with
STDP leads to a situation where neurons in higher visual areas will
gradually become selective to complex visual features in an unsu-
pervised manner. These features are both salient and consistently
present in the inputs. Furthermore, as learning progresses, the
neurons' responses rapidly accelerates. These responses can then be
fed to a classifier to do a categorization task.

In this study, we show that such an approach strongly out-
performs state-of-the-art computer vision algorithms on view-
invariant object recognition benchmark tasks including 3D-Object
Fig. 1. Overview of our 5 layered feedforward spiking neural network. The network pro
different color. Cells are organized in retinotopic maps until the S2 layer (included). S1 c
maps sub-sample the corresponding S1 maps by taking the maximum response over a sq
defined as a combination of oriented edges of a same scale(here we symbolically repres
each processing scale. Then C2 cells take the maximum response of S2 cells over all posit
based on the C2 cells' responses (here we symbolically represented a house/non-house
manner. (For interpretation of the references to color in this figure legend, the reader i
[25,26] and ETH-80 [27] datasets. These datasets contain natural
and unsegmented images, where objects have large variations in
scale, viewpoint, and tilt, which makes their recognition hard [28],
and probably out of reach for most of the other bio-inspired
models [29,30]. Yet our algorithm generalizes surprisingly well,
even when “simple classifiers” are used, because STDP naturally
extracts features that are class specific. This point was further
confirmed using mutual information [31] and representational
dissimilarity matrix (RDM) [32]. Moreover, the distribution of
objects in the obtained feature space was analyzed using hier-
archical clustering [33], and objects of the same category tended to
cluster together.
2. Materials and methods

The algorithm we used here is a scaled-up version of the one
presented in [24]. Essentially, many more C2 features and itera-
tions were used. Our code is available upon request. We used a
five-layer hierarchical network S1-C1-S2-C2-classifier, largely
inspired by the HMAX model [14] (see Fig. 1). Specifically, we
alternated simple cells that gain selectivity through a sum
operation, and complex cells that gain shift and scale invariance
through a max operation. However, our network uses spiking
neurons and operates in the temporal domain: when presented
with an image, the first layer's S1 cells, detect oriented edges and
the more strongly a cell is stimulated the earlier it fires. These S1
spikes are then propagated asynchronously through the
cesses the input image in a multi-scale form, each processing scale is shown with a
ells of each processing scale detect edges from the corresponding scaled image. C1
uare neighborhood. S2 cells are selective to intermediate complexity visual features,
ented a triangle detector and a square detector). There is one S1–C1–S2 pathway for
ions and scales and are thus shift and scale invariant. Finally, a classification is done
classifier). C1 to S2 synaptic connections are learned with STDP, in an unsupervised
s referred to the web version of this article.)
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feedforward network. We only compute the first spike fired by
each neuron (if any), which leads to efficient implementations. The
justification for this is that later spikes are probably not used in
ultra-rapid visual categorization tasks in primates [34]. We used
restricted receptive fields and a weight sharing mechanism (i.e.
convolutional network). In our model, images are presented
sequentially and the resulting spike waves are propagated through
to the S2 layer, where STDP is used to extract diagnostic features.

More specifically, the first layer's S1 cells detect bars and edges
using Gabor filters. Here we used 5�5 convolutional kernels corre-
sponding to Gabor filters with the wavelength of 5 and four different
preferred orientations ðπ=8;π=4þπ=8;π=2þπ=8;3π=4þπ=8Þ. These
filters are applied to five scaled versions of the original image: 100%,
71%, 50%, 30%, and 25% (each processing scale declared by a different
color in Fig. 1). Hence, for each scaled version of the input image we
have four S1 maps (one for each orientation), and overall, there are
4�5¼20 maps of S1 cells (see the S1 maps of Fig. 1). Evidently, the S1
cells of larger scales detect edges with higher spatial frequencies
while the smaller scales extract edges with lower spatial frequencies.
Indeed, instead of changing the size and spatial frequency of Gabor
filters, we are changing the size of input image. This is a way to
implement scale invariance at a low computational cost.

Each S1 cell emits a spike with a latency that is inversely pro-
portional to the absolute value of the convolution. Thus, the more
strongly a cell is stimulated the earlier it fires (intensity-to-latency
conversion, as observed experimentally [35–37]). To increase the
sparsity at a given scale and location (corresponding to one cor-
tical column), only the spike corresponding to the best matching
orientation is propagated (i.e. a winner-take-all inhibition is
employed). In other word, for each position in the four S1 orien-
tation maps of a given scale, the S1 cell with highest convolution
value emits a spike and prevents the other three S1 cells from
firing.

For each S1 map, there is a corresponding C1 map. Each C1 cell
propagates the first spike emitted by the S1 cells in a 7�7 square
neighborhood of the S1 map which corresponds to one specific
orientation and one scale (see the C1 maps of Fig. 1). C1 cells thus
execute a maximum operation over the S1 cells with the same
preferred feature across a portion of the visual field, which is a
biologically plausible way to gain local shift invariance [38,39]. The
overlap between the afferents of two adjacent C1 cells is just one
S1 row, hence a subsampling over the S1 maps is done by the C1
layers as well. Therefore, each C1 map has 6� 6¼ 36 fewer cells
than the corresponding S1 map.

S2 features correspond to intermediate-complexity visual fea-
tures which are optimum for object classification [40]. Each S2
feature has a prototype S2 cell (specified by a C1-S2 synaptic weight
matrix), which is a weighted combination of bars (C1 cells) with
different orientations in a 16�16 square neighborhood. Each
prototype S2 cell is retinotopically duplicated in the five scale maps
(i.e. weight-sharing is used). Within those maps, the S2 cells can
integrate spikes only from the four C1 maps of their corresponding
processing scales. This way, a given S2 feature is simultaneously
explored in all positions and scales (see S2 maps of Fig. 1 with
same feature prototype but in different processing scales specified
by different colors). Indeed, duplicated cells in all positions of all
scale maps integrate the spike train in parallel and compete with
each other. The first duplicate reaching its threshold, if any, is the
winner. The winner fires and prevents the other duplicated cells in
all other positions and scales from firing through a winner-take-all
inhibition mechanism. Then, for each prototype, the winner S2 cell
triggers the unsupervised STDP rule and its weight matrix is
updated. The changes in its weights are applied over all other
duplicate cells in different positions and scales (weight sharing
mechanism). This allows the system to learn frequent patterns,
independently of their position and size in the training images.
The learning process begins with S2 features initialized by
random numbers drawn from a normal distribution with mean
0.8 and STD 0.05, and the threshold of all S2 cells is set to 64
ð ¼ 1=4� 16� 16Þ. Through the learning process, a local inhibition
between different S2 prototype cells is used to prevent the con-
vergence of different S2 prototypes to similar features: when a cell
fires at a given position and scale, it prevents all the other cells
(independently of their preferred prototype) from firing later at
the same scale and within a neighborhood around the firing
position. Thus, the cell population self-organizes, each cell trying
to learn a distinct pattern so as to cover the whole variability of the
inputs. Moreover, we applied a k-winner-take-all strategy in S2
layer to ensure that at most two cells can fire for each processing
scale. This mechanism, only used in the learning phase, helps the
cells to learn patterns with different real sizes. Without it, there is
a natural bias toward “small” patterns (i.e., large scales), simply
because corresponding maps are larger, and so likeliness of firing
with random weights at the beginning of the STDP process is
higher.

A simplified version of STDP is used to learn the C1�S2 weights
as follows:

Δwij ¼ aþ :wij:ð1�wijÞ; if tj�tir0;
Δwij ¼ a� :wij:ð1�wijÞ; if tj�ti40;

(

where i and j respectively refer to the index of post- and pre-
synaptic neurons, ti and tj are the corresponding spike times, Δwij

is the synaptic weight modification, and aþ and a� are two
parameters specifying the learning rate. Note that the exact time
difference between two spikes ðtj�tiÞ does not affect the weight
change, but only its sign is considered. These simplifications are
equivalent to assuming that the intensity-to-latency conversion of
S1 cells compresses the whole spike wave in a relatively short time
interval (say, 20–30 ms), so that all presynaptic spikes necessarily
fall close to the postsynaptic spike time, and the time lags are
negligible. The multiplicative term wij:ð1�wijÞ ensures the weights
remain in the range [0,1] and maintains all synapses in an exci-
tatory mode. The learning phase starts by aþ ¼ 2�6 which is
multiplied by 2 after each 400 postsynaptic spikes up to a max-
imum value of 2�2. A fixed aþ =a� ratio (�4/3) is used. This allows
us to speed up the convergence of S2 features as the learning
progresses. Initiation of the learning phase with high learning
rates would lead to erratic results.

For each S2 prototype, a C2 cell propagates the first spike
emitted by the corresponding S2 cells over all positions and pro-
cessing scales, leading to the global shift- and scale-invariant cells
(see the C2 layer of Fig. 1).
3. Experimental results

3.1. Dataset and experimental setup

To study the robustness of our model with respect to different
transformations such as scale and viewpoint, we evaluated it on
the 3D-Object and ETH-80 datasets. The 3D-Object is provided by
Savarese et al. at CVGLab, Stanford University [25]. This dataset
contains 10 different object classes: bicycle, car, cellphone, head,
iron, monitor, mouse, shoe, stapler, and toaster. There are about 10
different instances for each object class. The object instances are
photographed in about 72 different conditions: eight view angles,
three distances (scales), and three different tilts. The images are
not segmented and the objects are located in different back-
grounds (the background changes even for different conditions of
the same object instance). Fig. 2 presents some examples of
objects in this dataset.



Fig. 2. Some images of the head class of 3D-Object dataset in different A) views, B) scales, and C) tilts.

Table 1
Performance of our model, HMAX, and DeepConvNet with different number of features.

Dataset Our model HMAX DeepConvNet

3D-Object # Features 200 300 400 500 1000 3000 9000 12000 4096
Accuracy 76.1% 94.7% 96.0% 96.0% 58.2% 60.1% 61.9% 62.4% 85.8%

ETH-80 # Features 500 750 1000 1250 500 1000 2000 5000 4096
Accuracy 75.3 79.3% 80.7% 81.1% 66.3% 68.7% 68.9% 69.0% 79.1%
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The ETh-80 dataset includes 80 3D objects in eight different
object categories including apple, car, toy cow, cup, toy dog, toy
horse, pear, and tomato. Each object is photographed in 41 view-
points with different view angles and different tilts. Fig. S1 in
Supplementary Information provides some examples of objects in
this dataset from different viewpoints.

For both datasets, five instances of each object category are
selected for the training set to be used in the learning phase. The
remaining instances constitute the testing set which is not seen
during the learning phase, but is used afterward to evaluate the
recognition performance. This standard cross-validation procedure
allows to measure the generalization ability of the model beyond
the specific training examples. Note that for 3D-Object dataset, the
original size of all images were preserved, while the images of
ETH-80 dataset are resized to 300 pixels in height while preser-
ving the aspect ratio. The images of both datasets were converted
to grayscale values.

As already mentioned, the building process of S2 features is
performed in a completely unsupervised manner. Hence, through
the execution of the unsupervised STDP-based learning, the
training images are randomly fed into the model (without con-
sidering their class labels, viewpoints, scales, and tilts). The
learning process starts with initial random weights and finishes
when 600 spikes have occurred in each S2 map. Then STDP is
turned off, and the ability of the obtained features to invariantly
represent different object classes is evaluated. To compute the
corresponding C2 feature vector for each input image, the
thresholds of C2 neurons are set to infinite, and their final poten-
tials are evaluated, after propagating the whole spike train gen-
erated by each image. Each final potential can be seen as the
number of early spikes in common between the current input and
a stored prototype (this is very similar to the tuning operation of S
cells in HMAX). Then, a one-versus-one multiclass linear support
vector machine (SVM) classifier is trained based on the C2 features
of the training set and it is evaluated on the test set.

We have compared the performance of our model with the
HMAX model [14] and deep supervised convolutional network
(DeepConvNet) by Krizhevsky et al. [16]. Comparison with the
HMAX model is particularly instructive, since as explained above,
we use very similar architecture, tuning and maximum operations.
The main difference is that instead of using an unsupervised
learning rule like us, the HMAX model uses random crops from the
training images to imprint the S2 features (here of equal size).
Then a SVM classifier was trained over the HMAX C2 features to
complete the object recognition process. The employed HMAX
model is implemented by Mutch, et al. [41] and the codes are
publicly available at http://cbcl.mit.edu/jmutch/cns/index.html.

We also compared our model with DeepConvNet which has
been shown to be the best algorithm in various object classifica-
tion tasks including the ImageNet LSVRC-2010 contest [16]. It is
comprised of eight consecutive layers (five convolutional layers
followed by three fully connected layers) with about 60 millions
parameters, learned with stochastic gradient descent. We have
used a pre-trained DeepConvNet model implemented by Jia, et al.
[42], whose code is also available at http://caffe.berkeleyvision.org.
The training was done over the ILSVRC2012 dataset (a subset of
ImageNet) with about 1.2 million images in 1000 categories. We
fed the training and testing images into DeepConvNet and
extracted the feature values from the 7th layer. Again, a SVM is
used to do the object recognition based on the extracted features.

3.2. Performance analysis

Table 1 provides the accuracy of our model in category classi-
fication independently of view, tilt, and scale, when different
number of S2 features are learned by the STDP-based learning
algorithm. The results indicate that the model reaches a high
classification performance on 3D-Object dataset with about 300 C2
features only (about 30 features per class). The performance is
flattened around 96% for feature vectors of size greater than 400.
Also, for the ETH-80 dataset, the model attains to a reasonable
recognition accuracy of about 81% with only 1250 extracted fea-
tures. We have also performed the same experiments on HMAX
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S.R. Kheradpisheh et al. / Neurocomputing 205 (2016) 382–392386
and DeepConvNet models which their accuracies are also provided
in Table 1.

Performance of the HMAX model was weak on both datasets,
which is not too surprising, several previous studies have shown
that the performance of the HMAX model extensively decreases
when facing significant object transformations [28,29]. Given the
structural similarities between our model and HMAX, the super-
iority of our model is presumably related to the unsupervised
feature learning. Indeed, most of the randomly extracted S2 pat-
ches in HMAX tend to be redundant and irrelevant, as we will see
in the next section.

DeepConvNet reached a mean performance of about 86% on
3D-Object and about 79% on ETH-80 dataset. Thus, our model
outperforms DeepConvNet on both datasets, which itself sig-
nificantly outperforms HMAX. It should be noted that the images
of each object in these two datasets are highly varied (e.g., in 3D-
Object dataset, there is a 45° difference between two successive
views of an object) and it has previously been shown that the
performance of DeepConvNet drops when facing such transfor-
mations [30]. Another drawback of DeepConvNet is that, due to
the large number of parameters, it needs to be trained over mil-
lions of images to avoid overfitting [43] (here we avoided this
problem by using a pre-trained version, but doing the training on
about 3500 images we used here would presumably lead to
massive overfitting). Conversely, our model is able to learn objects
using much fewer images.

Consequently, the results indicate that our model has a great
ability to learn diagnostic features tolerating transformations and
deformations of the presented stimulus.

3.3. Feature analysis

In this section, we demonstrate that unsupervised STDP
learning algorithm extracts informative and diagnostic features by
comparing them to the randomly picked HMAX features. To this
end, we have used several feature analysis techniques: repre-
sentational dissimilarity matrices, hierarchical clustering, and
mutual information. We performed the same analyses on both
datasets and obtained similar results. Hence, the results of ETH-80
are presented in Supplementary Information.

Extraction of diagnostic features let our model reach high
classification performances with a small number of features (c.f.
Table 1). To understand why this is true, we first reconstructed the
features' preferred stimuli. Given that each S2 neuron receives
spikes from C1 neurons responding to bars in different
Fig. 3. Three S2 feature prototypes selective to the a) bicycle, b)face, and c) cellphone cla
seen that the features converged to specific and salient object parts and neglected the
orientations, the representation of the preferred features of S2
neurons could be reconstructed by convolving their weight
matrices with a set of kernels representing oriented bars. In Fig. 3
the receptive fields of activated S2 neurons along with the repre-
sentation of their preferred stimuli are illustrated (Fig. S2 provides
the same illustration for the ETH-80 dataset). This demonstrates
that only a small number of S2 neurons are required to represent
the input objects. In other words, the obtained features are com-
patible with the sparse coding theory in visual cortex. In addition,
for an input image, the most activated S2 neurons cover the input
objects and they do not respond to the background area. Indeed,
the STDP learning algorithm naturally focuses on what are com-
mon in the training images, which are the target object features.
The backgrounds are generally not learned (at least not in prior-
ity), since they are almost always too different from one image to
another and the STDP process cannot converge on them.

To characterize the neuronal population coding in the C2 layer
of the model and to study the quality of C2 features, we used the
representational dissimilarity matrix (RDM) [32]). Each element of
the RDM reflects the measure of dissimilarity (distance) among
the neural activity patterns (i.e., the object representations) asso-
ciated with two different image stimuli. The distance we used here
is 1�Pearson correlation. In an RDM corresponding to a perfect
model, the representations of the objects of the same category
have low dissimilarities (i.e., highly correlated), whereas objects of
different categories are represented highly dissimilarly (i.e.,
uncorrelated). Hence, if we group the rows and columns of the
RDM of a perfect model based on object categories, it is expected
to see squares of low dissimilarity values around the main diag-
onal, each of which corresponds to pairs of same-category images,
while other elements have higher values.

Here, to plot the RDM of each view angle, first, the images of all
input instances which are taken in that view are picked. Then the
corresponding RDM is plotted by computing the pairwise dis-
similarity of the values of C2 features associated with each pair of
images. Fig. 4 presents the RDMs of our model for all eight views
(see Fig. S3 for ETH-80). In each RDM, rows and columns are sorted
based on image categories. Also, a sample image of each category
is placed next to the rows and columns which correspond to that
category. Here, we used a color-code to represent RDMs which
ranges from pure blue to pure yellow demonstrating low to high
dissimilarities, respectively. It can be seen that the within-category
dissimilarity values (identified by blue squares around the main
diagonal) are relatively lower than the between-category dissim-
ilarities (more yellowish areas). As expected, the RDMs indicate
sses of 3D-Object dataset along with their reconstructed preferred stimuli. It can be
irrelevant backgrounds.



Fig. 4. RDMs of our model on 3D-Object dataset corresponding to different viewpoints. It can be seen that within class dissimilarities are very low (the blue squares around
the main diagonal where rows and columns correspond to images of the same category), while between class dissimilarities are higher (more yellowish). Note that due to the
absence of image samples for some views of the monitor class, we have eliminated this class from the RDMs, (a) View 1. (b) View 2. (c) View 3. (d) View 4. (e) View 5. (f) View
6. (g) View 7. (h) View 8. Dissimilarity measure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that the obtained performance is not due to the capabilities of the
classifier, but to the extraction of diagnostic and highly informa-
tive C2 features through STDP.

We have also computed the RDMs of the HMAX model
(including 12000 features) for eight views, as provided in Fig. 5
(see Fig. S4 for ETH-80). As it can be seen in this figure, the ran-
domly selected features in the HMAX model are unable to simi-
larly represent within-category objects and dissimilarly represent
between-category objects. This is probably due to uninformative
features used by the HMAX model. Indeed, in HMAX, the task of
selecting the informative features is left to the classifier. We also
note the presence of horizontal and vertical yellow lines, indicat-
ing “outliers”, whose representation lies far away from all the
others. This indicates that the features do not pave well the
stimulus space.

To see how well the stimuli are distributed in the high
dimensional feature space, we performed hierarchical clustering
over the test set. The clustering procedure is started by consider-
ing each stimulus as a discrete cluster node, continued by con-
necting the closest nodes into a new combined cluster node, and
completed by connecting all the stimuli to a single node. We
performed this analysis on the C2 feature vectors corresponding to
all objects in all views, scales, and tilts. The obtained hierarchy for
our model is displayed in Fig. 6 (see Fig. S5 for ETH-80). The dis-
tance between a pair of cluster nodes is computed by measuring
the dissimilarity among their centers (the average of cluster
members). Due to the large number of stimuli, it is not possible to
plot the whole hierarchy, hence, only the high level clusters are
shown in this figure. For each lowest level cluster, the class with
the highest frequency is illustrated by an image label. The car-
dinality of this class as well as the cardinality of the cluster are
shown below the labels. It can be seen that the instances of each
object class are placed in neighboring regions of the C2 feature
space. By considering the obtained hierarchical clustering and the
classification accuracies, it can be concluded that the C2 features
are able to invariantly represent the objects in such a way that the
classifier can easily separate them.

The same hierarchical clustering is performed for the HMAX
feature space (with 12000 features), as depicted in Fig. 7 (see Fig.
S6 for ETH-80). As it can be seen, the majority of clusters are small,
and contrary to our model, the distances between the clusters are
very low. In other words, the objects are densely represented in a
small area of such a high dimensional feature space. Furthermore,
the mean intra- and inter-class dissimilarities in our model are
equal to 0.40 and 0.70, respectively, while these statistics for the
HMAX model are equal to 0.27 and 0.29, respectively. In summary,
it can be concluded that the distribution of the object classes are
dense and highly overlapped in the HMAX feature space, while the
object classes are well separated in the feature space of our model.

In an other experiment, we analyzed the class dependency of the C2
features for our model. To this end, the 50 most informative features,
when classifying a specific class against all the other classes, are
selected by employing the mutual information technique. In other
words, for each class, we selected those 50 features which have the
highest activity for samples of that class and have less activity for other
classes. Afterwards, the number of common features among the
informative features of each pair of classes are computed as provided in
Table 2. On average, there are only about 5.4 common features
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between pairs of classes. Although there are some common features
between any two classes, their co-occurrence with the other features
help the classifier to separate them from each other. In this way, our
Fig. 5. RDMs of the HMAX model on 3D-Object dataset corresponding to different viewp
within-category objects and dissimilarly represent between-category objects. Note that
eliminated this class from the RDMs, (a) View 1. (b) View 2. (c) View 3. (d) View 4. (e) Vi
the references to color in this figure, the reader is referred to the web version of this a

Fig. 6. The hierarchy of clusters and their labels for our model on 3D-object dataset. The
can be seen that the samples of each class are placed in close clusters. The cardinality o
placed below the cluster label as H=C.
model can represent various object classes with a relatively small
number of features. Indeed, exploiting the intermediate complexity
features, which are not common in all classes and are not very rare, can
oints. Randomly selected features in HMAX model are not able to similarly represent
due to the absence of image samples for some views of the monitor class, we have
ew 5. (f) View 6. (g) View 7. (h) View 8. Dissimilarity measure. (For interpretation of
rticle.)

label of each cluster indicates the class with the highest frequency in that cluster. It
f each cluster, C, and the cardinality of the class with the highest frequency, H, are



Fig. 7. The hierarchy of clusters and their labels for the HMAX model on 3D-Object dataset. The label of each cluster indicates the class with the highest frequency in that
cluster. It can be seen that the majority of the objects are assigned to a small number of clusters and samples of each class are not well placed in close clusters. The cardinality
of each cluster, C, and the cardinality of the class with the highest frequency, H, are placed below the cluster label as H=C.

Table 2
The number of common features between each pair of classes of 3D-Object dataset.

Class Bicycle Car Cellphone Head Iron Monitor Mouse Shoe Stapler Toaster

Bicycle 50 0 1 3 6 4 12 6 5 5
Car 0 50 1 14 10 11 1 2 6 7
Cellphone 1 1 50 0 3 4 2 0 10 9
Head 3 14 0 50 0 0 10 16 2 2
Iron 6 10 3 0 50 21 0 4 12 6
Monitor 4 11 4 0 21 50 0 0 8 14
Mouse 12 1 2 10 0 0 50 2 2 5
Shoe 6 2 0 16 4 0 2 50 0 0
Stapler 5 6 10 2 12 8 2 0 50 20
Toaster 5 7 9 2 6 14 5 0 20 50
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help the classifier to discriminate instances of different classes [40].

3.4. Random features and simple classifier

In a previous study [44], it has been shown that using the
HMAX model with random dot patterns in the S2 layer can reach a
reasonable performance, comparable to the one obtained with
random patches cropped from the training images. It seems that
this is due to the dependency of HMAX to the application of a
powerful classifier. Indeed, the use of both random dot or ran-
domly selected patches transform the images into a complex and
nested feature space and it is the classifier which looks for a
complex signature to separate object classes. The deficiencies
emerge when the classification problem gets harder (such as
invariant or multiclass object recognition problems) and then even
a powerful classifier is not able to discriminate the classes [28,29].
Here, we show that the superiority of our model is due to the
informative feature extraction through a bio-inspired learning
rule. To this end, we have compared the performances on 3D-
Object dataset obtained with random features versus STDP fea-
tures, as well as a very simple classifier versus SVM.

To generate random features, we have set the weight matrix of
each S2 feature of our model with random values. First, we have
computed the mean and standard deviation (STD) (253721) of
the number of active (nonzero) weights in the features learned by
STDP. Second, for each random feature, the number of active
weights, N, is computed by generating a random number based on
the obtained mean and STD. Finally, a random feature is con-
structed by uniformly distributing the N randomly generated
values in the weight matrix.

In addition, we designed a simple classifier comprised of sev-
eral one-versus-one classifiers. For each binary classifier, two
subset of C2 features with high occurrence probabilities in one of
the two classes are selected. In more details, to select suitable
features for the first class, the occurrence probabilities of C2 fea-
tures in this class are divided by the corresponding occurrence
probabilities in the second class. Then, a feature is selected if this
ratio is higher than a threshold. The optimum threshold value is
computed by a trial and error search in which the performance
over the training samples is maximized. To assign a class label to
the input test sample, we performed an inner product on the
feature value and feature probability vectors. Finally, the class with
the highest probability is reported to the combined classifier. The
combined classifier selects the winner class based on a simple
majority voting.

For 500 random features, using the SVM and the simple clas-
sifier, our model reached classification performances of 71% and
21% on average, respectively. Whereas, for the learned S2 features,
both the SVM and simple classifiers attained reasonable perfor-
mances of 96% and 79%, respectively. Based on these results, it can
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be concluded that the features obtained through the bio-inspired
unsupervised learning projects the objects into an easily separable
space, while the feature extraction by selection of random patches
(drawn from the training images) or by generation of random
patterns leads to a complex object representation.
4. Discussion

Position and scale invariance in our model are built-in, thanks
to weight sharing and scaling process. Conversely, view-invariance
must be obtained through the learning process. Here, we used all
images of five object instances from each category (varied in all
dimensions) to learn the S2 visual features, while images of all
other object instances of each category were used to test the
network. Hence, the model was exposed to all possible variations
during the learning to gain view-invariance. Moreover, near or
opposite views of the same object shares some features which are
suitable for invariant object recognition. For instance, consider the
overall shape of a head, or close views of a bike wheel which could
be a complete circle or an ellipse. Regarding the fact that STDP
tends to learn more frequent features in different images, different
views of an object could be invariantly represented based on more
common features.

Our model appears to be the best choice when dealing with
few object classes, but huge variations in view points. As pointed
out in previous studies, both HMAX and DeepConvNet models
could not handle these variations perfectly [28–30]. Conversely,
our model is not appropriate to handle many classes, which
requires thousands of features, like in the ImageNet contest,
because its time complexity is roughly in N2, where N is the
number of features (briefly: since the number of firing neurons per
image is limited, if the number of features is doubled, reaching
convergence will take roughly twice as many images, and the
processing time for each of them will be doubled as well). For
example, extracting 4096 features in our model, the same number
of features in DeepConvNet, would take about 67 times it took us
to extract 500. However, parallel implementation of our algorithm
could speed-up the computation time by several orders of mag-
nitude [45]. Even in this case, we do not expect to outperform the
DeepConvNet model on the ImageNet database, since only the
shape similarities are taken into account in our model and the
other cues such as color or texture are ignored.

Importantly, our algorithm has a natural tendency to learn
salient contrasted regions [24], which is desirable as these are
typically the most informative [46]. Most of our C2 features turned
out to be class-specific, and we could guess what they represent by
doing the reconstructions (see Fig. 3 and Fig. S2). Since each fea-
ture results from averaging multiple input images, the specificity
of each instance is averaged out, leading to class archetypes.
Consequently, good classification results can be obtained using
only a few features, or even using ‘simple’ decision rules like
feature counts [24] and majority voting (here), as opposed to a
‘smart classifier’ such as SVM.

There are some similarities between STDP-based feature
learning, and non-negative matrix factorization [47], as first
intuited in [48], and later demonstrated mathematically in [49].
Within both approaches, objects are represented as (positive)
sums of their parts, and the parts are learned by detecting con-
sistently co-active input units.

Our model could be efficiently implemented in hardware, for
example using address event representation (AER) [50–53]. With
AER, the spikes are carried as addresses of sending or receiving
neurons on a digital bus. Time ‘represents itself’ as the asynchro-
nous occurrence of the event [54]. Thus the use of STDP will lead
to a system which effectively becomes more and more reactive, in
addition to becoming more and more selective. Furthermore, since
biological hardware is known to be incredibly slow, simulations
could run several order of magnitude faster than real time [55]. As
mentioned earlier, the primate visual system extracts the rough
content of an image in about 100 ms. We thus speculate that some
dedicated hardware will be able to do the same in the order of a
millisecond or less.

Recent computational [40], psychophysical [56], and fMRI [57]
experiments demonstrate that the informative intermediate
complexity features are optimal for object categorization tasks. But
the possible neural mechanisms to extract such features remain
largely unknown. The HMAX model ignores these learning
mechanisms and imprints its features with random crops from the
training images [14,58], or even uses random filters [44,59]. Most
individual features are thus not very informative, yet in some
cases, a ‘smart’ classifier such as SVM can efficiently separate the
high-dimensional vectors of population responses.

Many other models use supervised learning rules [13,16],
sometimes reaching impressive performance on natural image
classification tasks [16]. The main drawback of these supervised
methods, however, is that learning is slow and requires numerous
labeled samples (e.g., about 1 million in [16]), because of the credit
assignment problem [60,61]. This contrasts with humans who can
generalize efficiently from just a few training examples [43]. We
avoid the credit assignment problem by keeping the C2 features
fixed when training the final classifier (that being said, fine-tuning
them for a given classification problem would probably increase
the performance of our model [17,62]; we will test this in future
studies). Even if the efficiency of such hybrid unsupervised-
supervised learning schemes has been known for a long time,
few alternative unsupervised learning algorithms have been
shown to be able to extract complex and high-level visual features
(see [15,17]). Finding better representational learning algorithms is
thus an important direction for future research and seeking for
inspiration in the biological visual systems is likely to be fruitful
[43]. We suggest here that the physiological mechanism known as
STDP is an appealing start point.

Considering the time relation among the incoming inputs is an
important aspect of spiking neural networks. This property is
critical to promote the existing models from static vision to con-
tinuous vision [63]. A prominent example is the trace learning rule
[64], suggesting that the invariant object representation in ventral
visual system is instructed by the implicit temporal contiguity of
vision. Also, in various motion processing and action recognition
problems [65], the important information lies in the appearance
timing of input features. Our model has this potential to be
extended for continuous and dynamic vision – something that we
will further explore.
5. Conclusions

To date, various bio-inspired network architectures for object
recognition have been introduced, but the learning mechanism of
biological visual systems has been neglected. In this paper, we
demonstrate that the association of both bio-inspired network
architecture and learning rule results in a robust object recogni-
tion system. The STDP-based feature learning, used in our model,
extracts frequent diagnostic and class specific features that are
robust to deformations in stimulus appearance. It has previously
been shown that the trivial models can not tolerate the identity
preserving transformations such as changes in view, scale, and
position. To study the behavior of our model confronted with
these difficulties, we have tested our model over two challenging
invariant object recognition databases which includes instances of
10 different object classes photographed in different views, scales,
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and tilts. The categorization performances indicate that our model
is able to robustly recognize objects in such a severe situation. In
addition, several analytical techniques have been employed to
prove that the main contribution to this success is provided by the
unsupervised STDP feature learning, not by the classifier. Using
representational dissimilarity matrix, we have shown that the
representation of input images in C2 layer are more similar for
within-category and dissimilar for between-category objects. In
this way, as confirmed by the hierarchical clustering, the objects
with the same category are represented in neighboring regions of
C2 feature space. Hence, even if using a simple classifier, our model
is able to reach an acceptable performance, while the random
features fail.
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