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Abstract

■ Prior expectations have a powerful influence on perception,
biasing both decision and confidence. However, how this oc-
curs at the neural level remains unclear. It has been suggested
that spontaneous alpha-band neural oscillations represent
rhythms of the perceptual system that periodically modulate
perceptual judgments. We hypothesized that these oscillations
instantiate the effects of expectations. While collecting scalp
EEG, participants performed a detection task that orthogo-
nally manipulated perceptual expectations and attention. Trial-
by-trial retrospective confidence judgments were also collected.

Results showed that, independent of attention, prestimulus oc-
cipital alpha phase predicted the weighting of expectations on
yes/no decisions. Moreover, phase predicted the influence of
expectations on confidence. Thus, expectations periodically
bias objective and subjective perceptual decision-making to-
gether before stimulus onset. Our results suggest that alpha-
band neural oscillations periodically transmit prior evidence
to visual cortex, changing the baseline from which evidence ac-
cumulation begins. In turn, our results inform accounts of how
expectations shape early visual processing. ■

INTRODUCTION

Perception is subject to powerful top–down influences.
For example, a highly ambiguous figure can be easily
identified following brief priming of object identity
(Porter, 1954). Many believe that the feed-forward sensory
input is shaped by feedback or recurrent connections from
high-level cortical areas to lower-level regions (Gilbert &
Li, 2013; Gilbert & Sigman, 2007; Lee, 2002) following a
first pass up the sensory hierarchy (Bar, 2003). However,
the neuronal mechanisms that integrate top–down and
bottom–up signals remain largely unknown (Bar, 2003).

Top–down influences, including priming, context ef-
fects, and prior exposure, can be parsimoniously con-
strued as a process that biases perceptual inference
toward a plausible solution. In line with this, there has
been renewed interest in framing top–down influences
in terms of probabilistic prior beliefs or “expectations”
(Summerfield & de Lange, 2014), which, behaviorally, bias
perceptual choice (Sherman, Seth, Barrett, & Kanai, 2015;
De Lange, Rahnev, Donner, & Lau, 2013). It is suggested
that expectations are represented in high-level cortical re-
gions before the perceptual event and entrain task-relevant
neurons at lower levels to increase sensitivity (Engel, Fries,
& Singer, 2001). Spontaneous neural oscillations are there-
fore a promising candidate mechanism for how expecta-
tions shape perception.

Oscillations in the alpha range are particularly relevant
when considering how expectations influence percep-

tion. Theoretical models have associated top–down pro-
cesses with oscillations in the 8–14 Hz range (Friston,
Bastos, Pinotsis, & Litvak, 2014; Bastos et al., 2012),
and recent neurophysiological findings suggest that oc-
cipital alpha oscillations primarily propagate in a top–
down fashion (Van Kerkoerle et al., 2014), supporting
the notion that alpha power is intimately related to
top–down control (Mathewson et al., 2012; Klimesch,
Sauseng, & Hanslmayr, 2007; Palva & Palva, 2007). Recent
work has revealed that the phase (in addition to power)
of prestimulus alpha oscillations also predicts various
components of perception. These include spatial atten-
tion (Busch & VanRullen, 2010), saccadic reaction speed
(Drewes & VanRullen, 2011), and perceptual awareness
ratings (Mathewson, Gratton, Fabiani, Beck, & Ro,
2009). This has been interpreted as reflecting cycles in
the “preparedness” of the perceptual system (Vanrullen,
Busch, Drewes, & Dubois, 2011). In Bayesian terms, prior
beliefs (i.e., expectations) are available before stimulus
onset. Accordingly, we hypothesized that this “prepared-
ness” should be modulated by expectations: anticipating
a perceptual event should bias perceptual inference to-
ward that event. This was tested by asking whether the
extent to which decisions are biased by expectation oscil-
lates with prestimulus occipital alpha phase.
Perceptual decisions are additionally accompanied by

a subjective degree of confidence, which is associated
with uncertainty arising through external (i.e., sensory) or
internal noise. Recent work has shown that the decision
variable and decision confidence may be encoded together
(Kiani & Shadlen, 2009) and arise from the same sensory
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evidence (Fetsch, Kiani, Newsome, & Shadlen, 2014). In
addition to expectations biasing decision, expected per-
ceptual events are associated with greater subjective con-
fidence (Sherman, Seth, et al., 2015). Following these
findings, we additionally hypothesized that prestimulus
alpha phase would predict the influence of perceptual
priors on confidence.
These two hypotheses were tested by adopting a dual-

task Gabor detection paradigm, which manipulated prior
expectations while controlling for the (often conflated) in-
fluence of attention (Feldman&Friston, 2010; Summerfield
& Egner, 2009). Prior expectations of target presence or
absence were induced by manipulating (block-wise) the
probability of Gabor appearance, presented at a contrast
that yielded 70% accuracy. The probability was either
25%, such that absence was expected, or 75%, such that
presence was expected. A concurrent visual search task
diverted attention from the Gabor task in half of the
blocks. Critically, the visual search array and Gabor were
presented simultaneously following a jittered ISI (Fig-
ure 1). This allowed us to time-lock our EEG analysis to
both Gabor-present and Gabor-absent trials and compute
independent measures of decision threshold (bias) and
detection sensitivity as a function of condition and pre-
stimulus EEG phase.
Our first hypothesis was that prestimulus alpha phase

would predict the extent to which decision threshold is
biased by expectation. This would be shown if (1) deci-
sion threshold oscillates with prestimulus phase and (2)
there is some phase angle that predicts “yes” responses
when expecting target presence (the 75% condition)
while predicting “no” responses when expecting target
absence (the 25% condition).

Our second hypothesis was that prestimulus alpha
phase would also predict expectancy effects on subjec-
tive confidence. This would be shown if (1) confidence
oscillates with prestimulus phase and (2) the same phase
that predicts high confidence when expectations are
met will predict low confidence when expectations are
violated.

METHODS

Participants

Participants were 20 English-speaking participants
(13 women) aged between 20 and 32 years (M = 25.6,
SD = 3.3) with normal or corrected-to-normal vision.
One participant’s data were excluded from analysis for
being excessively noisy and a second for having too few
trials (<500 vs. mean of ∼1100). This was due to exces-
sively slow responding. This left 18 participants’ data for
analysis. All participants gave informed, written consent
and were reimbursed at £10.30/hr. On average, each
session lasted 2.5 hr, and two sessions were completed
24 hours apart. Ethical approval was awarded by the
University of Sussex ethics committee (C-REC).

Stimuli and Design

The experiment was presented on a 21-in. CRT monitor
(100 Hz, 1048 × 700 resolution) using Psychtoolbox for
Matlab (Natick, MA). The experiment was composed of
two concurrent tasks: detection of a peripheral Gabor
patch and a visual search task in the center of the screen
(Figure 1).

Figure 1. Trial sequence. Before the first trial of a block participants are informed of the experimental condition they are in. In this example,
“25%” means that the participant is in the 25% chance of Gabor presence condition and “ignore letters” means that the participant should ignore the
visual search array (i.e., they are in the full attention condition). During the trial, a target Gabor is either present (top) or absent (bottom). Similarly, a
visual search target T is either present (bottom) or absent (top). Response prompts followed the offset of the masking array.
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Trials began with the onset of a white fixation cross.
After a jittered ISI (1000–1500 msec), the visual search
array appeared. This consisted of four rotated (random
orientation of 0°–359°), white, capitalized letters arranged
around fixation (1.43° × 1.43°) at 0°, 90°, 180°, and 270°.
On 50% of trials, the visual search target was absent and
all letters were Ls. On the other 50%, one randomly des-
ignated L was replaced by a target T. To ensure that the
task was sufficiently difficult to divert attention from the
Gabor task, this array was backward masked by an array
of Fs. The SOA between the visual search and masking
array was titrated for each individual to equated detection
performance to 78% across participants (see Staircases).

On Gabor “target-present” trials, a peripheral (3.85° ×
4.095° visual angle) Gabor patch (SD 0.89°, sf 0.08c/d,
phase 45°) was presented in the lower right quadrant
of the screen. On these trials, the Gabor and the visual
search array appeared simultaneously. The Gabor was
presented for 10 msec at the contrast resulting in a 70%
hit rate (see Staircases).

Following the offset of the visual search array, a series
of response prompts appeared. Using a key press, partic-
ipants made unspeeded judgments of, first, Gabor pres-
ence or absence; second, confidence that they were
correct on an interval scale from 1 (no confidence) to
4 (total confidence); and finally, the presence or absence
of a T in the visual search array.

The experiment had four conditions, constructed in a
blocked attention (full, diverted) × expectation (expect
Gabor presence, expect Gabor absence) design. Under
full attention participants fixated centrally but did not
perform the visual search task, thereby allocating full at-
tention to Gabor detection (visual search responses were
not requested). Under diverted attention, participants
performed both tasks, prioritizing visual search. Expecta-
tion was manipulated by informing participants of the
true probability of Gabor presence (as well as the atten-
tion condition) before each block began. This was either
25% (expect absence) or 75% (expect presence). After
each experimental trial, a condition-specific 2 down 1
up staircase titrated the contrast of the Gabor to maintain
a consistent hit rate during the long experimental ses-
sions. Expectation-specific staircases controlled for po-
tentially greater levels of sensory adaptation to the
Gabor in the 75% condition.

Each block consisted of 12 trials from one of the con-
ditions, and blocks were completed in sets of 8 (2 of each
condition, 96 trials). Blocks were fully counterbalanced.
Participants completed as many blocks as possible in
each testing period (always equal numbers of each con-
dition; 6–18 runs of each condition per session, M =
11.5). Across participants, there was considerable varia-
tion in total trials completed due to the cumulative effect
of RT differences.

After explaining the task to participants, they com-
pleted a set of practice trials. Next, they completed three
staircase procedures (see Staircases) and, finally, the ex-

perimental trials. Participants were encouraged to take
regular breaks and were offered to leave the session early
if they became too tired to continue.

Staircases

Following a set of practice trials, participants completed
three interleaved 2 down 1 up psychophysical adaptive
staircase procedures with eight reversals to equate task
difficulty across conditions and participants. The visual
display was always the same as that in the experimental
trials, but the instructions and response prompts dif-
fered. In the first staircase, participants performed Gabor
detection while ignoring the visual search array (full
attention). Only Gabor-present/-absent responses were
collected. Gabor contrast was titrated to achieve a 70%
hit rate (contrast cannot be titrated in target absent trials)
under full attention. In the second staircase (3 up and
1 down), the Gabor was ignored, and participants per-
formed only visual search. Here, only responses to the
visual search target were collected (T-present/-absent).
The SOA between the visual search array and the masking
array was titrated to achieve 78% accuracy in the visual
search task. In the third staircase, participants performed
both Gabor detection and visual search simultaneously, pri-
oritizing visual search and reported both Gabor presence/
absence and T presence/absence. Here, Gabor contrast
was titrated to achieve a 70% hit rate under diverted atten-
tion. The SOA for the visual search display was set to that
determined by the second staircase. Confidence judg-
ments were not collected during the staircases.

EEG Acquisition

EEG data were collected on an ANT system at a sample rate
of 2048 Hz with no online filtering. Activity was measured
continuously from 62 active electrode channels arranged
according to the 10/20 system over the scalp. The ground
electrode was placed on the forehead, and data were aver-
aged across the whole head online. Impedances were kept
below 7 kΩ throughout the experimental session. Partici-
pants sat in an electrically shielded faraday cage with an ex-
ternal monitor viewed through shielding glass. Their head
was stabilized with a chin rest.

EEG Preprocessing

EEG data were preprocessed using the EEGLAB toolbox for
Matlab. During preprocessing EEG recordings were down-
sampled to 256 Hz and high-pass (0.1 Hz) filtered with a
finite impulse response filter (EEGlab function eegfilt).
EEG data were visually inspected for excessively noisy
channels, which were manually interpolated with their
two neighbors on a block-wise basis. No participant re-
quired more than three channels interpolated (five partic-
ipants in total). No interpolated channels were included in
analyses presented in this article. After interpolation, data
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were referenced to participants’ average signal. Data were
epoched from 1000 msec before visual search array (and
Gabor target, if present) onset to 500 msec after. Manual
artifact rejection was performed on saccade, eye blink,
and excessively noisy trials (5% of trials removed on aver-
age). For each participant, each electrode, and each trial
we computed, the time–frequency wavelet decomposi-
tion of the EEG data. Window lengths of 1 oscillatory cycle
at low frequencies (starting at 2 Hz) were utilized. This
length linearly increased with frequency band to a maxi-
mum of 15 cycles at 50 Hz. This decomposition method
generated wavelet coefficients for 49 log-spaced frequen-
cies and 242 time points.

Analysis

EEG: Electrode ROI

We had an a priori hypothesis that top–down influences
of prior expectation would be observable over occipital
regions. Initial analyses were therefore restricted to the
occipital electrodes O1, Oz, and O2. Because phase at
some time–frequency point will differ across electrodes,
analyses were further restricted to one electrode per partic-
ipant and session. To control for differences in electrode
placement, electrode ROIs (eROIs) were determined on
a participant-by-participant and session-by-session basis ac-
cording to their sensitivity to the Gabor detection task. The
grand-averaged ERP indicated a negative deflection follow-
ing hits relative to misses in the 75–200 msec range. Each
participant’s session-specific eROI was therefore chosen as
the occipital electrode (i.e., O1, Oz, or O2) that showed the
greatest ERP amplitude, as defined below. To compute the
ERPs, a 200-msec prestimulus baseline was subtracted from
each epoch. Epochs in which hits (respectively, misses)
were made were averaged together. For each response
type (hit or miss), we obtained the maximal local peak am-
plitude (LPA) in the 75–200 msec period. LPA is defined as
the greatest amplitude within a range of time points such
that this peak is greater than the average amplitude of the
surrounding 7 time points (Luck, 2005). This method min-
imizes the chance of selecting spurious spikes. The eROI
for each participant was chosen as the occipital electrode
that showed the greatest value for LPAhit − LPAmiss. Subse-
quent analyses on phase were restricted to these eROIs.

EEG: Phase Opposition Analysis

Next, we sought to determine if, for our eROI, spontane-
ous EEG phase differed at any time point and in any fre-
quency band between “reported present” (yes) and
“reported absent” (no) trials. This was done to isolate
candidate time–frequency regions in which expectation
might interact with the influence of EEG phase. The re-
lationship between phase and response was quantified
with the measure phase opposition (Vanrullen et al.,
2011), which is defined as the mean of phase-locking

values (PLVs) for yes and no responses. PLV measures
the extent to which phase angle at some time–frequency
point over one electrode is predicted by either (A) phase
at the same time–frequency point over another electrode
or (B) a behavioral response (as in the present article).
Here, we used PLV as a measure of the relationship be-
tween ongoing phase and response. Because yes and no
responses encompass all possible responses and because
stimulus onset is unpredictable (randomized ISIs), the
joint PLV across all trials is expected to be small (no dif-
ferent from chance). However, if EEG phases for a given
behavioral response are clustered about some angle
(necessarily different for yes and no), then the individual
PLVs for both yes and no responses and, therefore, the
resulting phase-opposition value will be high (up to 1
for perfect phase opposition; see Vanrullen et al., 2011,
for additional details). High (and statistically significant)
values indicate that phase predicts yes versus no re-
sponses. For a set of n trials where response R is given
and where C(R) is the complex coefficients of the wavelet
transform, PLVR and phase opposition (PO) for responses
R1 and R2 are defined as follows:

PLVR ¼ 1
n

X

n

C Rð Þ
C Rð Þj j

�����

����� POR1;R2 ¼
PLVR1 þ PLVR2

2

This measure PO is similar to the phase bifurcation index
(PBI; Busch, Dubois, & VanRullen, 2009). PBI is defined
as (PLVR1 − PLVALL) × (PLVR2 − PLVALL), that is, the
baseline-corrected product of PLVs for Response 1 and
Response 2. We preferred the additive measure PO, be-
cause PBI can give unreliable results when taking the
product over very small values. Moreover, because PO
is additive, it is robust to differences in trial counts
between “yes” and “no” trials: any baseline correction
applied to empirical PO values would be equally
applied to bootstrapped PO values and cancel out.

PO between yes and no responses was separately cal-
culated for each level of attention and expectation. Sep-
arate calculation of PO for each level of expectation was
necessary because we hypothesized that the phases pre-
dicting “yes” (respectively, “no”) would differ as a func-
tion of expectation. The four PO time–frequency maps
corresponding to each experimental condition were aver-
aged together.

At each time–frequency point, PO statistical signifi-
cance was assessed by estimating the mean and standard
deviation of the null distribution from 8000 bootstrapped
samples per participant. To obtain bootstrapped samples,
responses were pseudorandomly assigned to trials such
that the number of yes and no responses stayed the
same. PO was then recalculated. This method removed
any relationship between the EEG signal and behavior.
Z scores and p values were computed by comparing em-
pirical PO values to the mean and standard deviation of
the bootstrapped values. p values were false discovery
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rate (FDR) corrected for multiple comparisons over all
frequencies and all prestimulus time points.

EEG: Phase Modulation of Perceptual Decision

The time–frequency representation of phase opposition
values revealed that phase is related to the participants’
response (see above and Figure 3B). However, we did
not know (and aimed to determine) whether the “opti-
mal” phase for a yes response is comparable for the
different expectation conditions. To determine whether
the influence of expectation on decision is predicted by
prestimulus phase in some frequency band, a follow-up
analysis was run in which the data were restricted to a
time–frequency ROI. The time–frequency ROI was taken
as the point of maximal phase opposition (PO) signifi-
cance. Critically, there was no circularity in this analysis
because PO values had been collapsed across levels of
expectation.

For each participant, each condition, and each trial,
the phase at the time–frequency ROI was binned into
one of six phase bins. For each bin, we then computed
within-subject signal detection theoretic (SDT) outcome
variables d0 (sensitivity), c (decision threshold/bias), and
confidence (percentage of trials reported with high confi-
dence). This provided values of each SDT outcome as a
function of condition and phase bin. Using six bins en-
abled a sufficient number of trials for SDT estimates to
be reliable.

SDT Outcomes

To obtain separate measures of detection sensitivity and
decision bias, we used SDT (for an overview, see Sherman,
Barrett, & Kanai, 2015; Green & Swets, 1966). For each
experimental condition, trials were categorized into hits,
misses, false alarms, and correct rejections. Hit rate and
false alarm rate are then defined as

Hit rate ¼
X

Hits
X

Hitsþ
X

Misses

False alarm rate ¼
X

False alarms
X

False alarmsþ
X

Correct rejections

From these quantities, detection sensitivity for the Gabor
target d0 and decision threshold c are given by

d0 ¼ Z Hit rateð Þ−Z false alarm rateð Þ

c¼−
Z Hit rateð ÞþZ false alarm rateð Þ

2

where Z is the inverse normal cumulative distribution
function. Note that for decision threshold c, positive
values represent a conservative bias (more likely to
report no) and negative values represent a liberal bias
(more likely to report yes).

In computing these measures, we used the log-linear
rule, which adds 0.5 to the total number of hits, misses,
false alarms, and correct rejections. This ensures that
SDT outcome variables can be computed for all condi-
tions and phase bins and also acts as a Bayesian prior
on a d0 of zero.

Confidence

Confidence ratings were collected on a 4-point scale. To
account for individual differences in how the scale was
used (mean confidence = 2.92, range = 2.34–3.47), we
collapsed ratings onto a binary scale. This was achieved
by calculating each participant’s mean confidence across
all conditions and then categorizing each rating as high
(greater than the mean) or low (lower than the mean).
Note that we did not use a median split because, here,
the median is always an integer.

Statistical Analyses

Data were collapsed over experimental session. The fac-
tor Session (1 or 2) did not significantly interact with any
other factors under any behavioral dependent variable.
Analyses were conducted using Matlab, CircStat toolbox
for Matlab (Berens, 2009) for circular statistics, and SPSS.
Where appropriate, p values were FDR-corrected. Where
appropriate, circular statistics were corrected for the
binning of phase angles. Unless otherwise specified, data
subjected to within-subject ANOVAs met the assumption
of sphericity.

RESULTS

Expectation and Attention Separately Influence
Contrast Sensitivity

To determine the success of our attention manipulation,
we asked whether diverting attention with the visual
search task decreased contrast sensitivity (as determined
by the psychophysical staircases). Mean Gabor contrast
was subjected to an Attention (full, diverted) × Expecta-
tion (25%, 75%) repeated-measures ANOVA. This re-
vealed a significant main effect of Attention, F(1, 17) =
22.60, p < .001, ηp

2 = .57, such that contrast sensitivity
was significantly greater (i.e., contrast threshold decreased)
in the full (19.8% ± 1.2%) than diverted (25.7% ± 1.3%)
attention condition. Our manipulation of attention was
therefore successful. The ANOVA also revealed a significant
main effect of Expectation, F(1, 17) = 8.50, p= .010, ηp

2 =
.33, whereby contrast sensitivity is significantly greater in
the 75% (22.3%± 1.1%) than the 25% (23.3%± 1.1%) con-
dition. This is likely to be an outcome of more Gabor ex-
posure in the 75% than the 25% condition, which was
controlled by implementing running staircases during the
experimental phase (see Staircases). The interaction
between Attention and Expectation was not significant,
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F(1, 17) = 1.26, p= .278, ηp
2 = .07. Results are represent-

ed in Figure 2A.

Expectations Bias Decision and Increase
Subjective Confidence

The main behavioral analyses presented here used SDT
(for details, see Methods). To ensure that our expecta-
tion manipulation successfully biased choice, decision
threshold c was calculated as a function of condition.
Here, c > 0 represents a conservative bias (i.e., toward
reporting “no”), whereas c < 0 represents a liberal bias
(i.e., toward reporting “yes”). An Attention (full, diverted)×
Expectation (25%, 75%) repeated-measures ANOVA
revealed that c was significantly affected by Expectation,
F(1, 17) = 70.33, p < .001, ηp

2 = .80. As predicted, c
was significantly more conservative in the 25% than the
75% condition (Mdiff = 0.21 ± 0.03; Figure 2B), meaning
that decisions were more biased toward absence in the
“expect absent” (25%) than the “expect present” (75%)
condition. There was neither a significant main effect of
Attention, F(1, 17) = 0.01, p = .952, ηp

2 < .01, nor a sig-
nificant interaction between factors, F(1, 17) = 1.45, p =
.244, ηp

2 = .08.

To determine whether detection sensitivity had been
successfully equated across conditions, an Attention ×
Expectation repeated-measures ANOVA under detection
sensitivity d0 was run. This revealed a significant main ef-
fect of Expectation, F(1, 17) = 52.85, p < .001, ηp

2 = .76,
such that d0 was greater in the 25% (2.60 ± 0.09) than the
75% (2.23 ± 0.09) condition. This small difference was an
unavoidable consequence of liberalizing decision thresh-
old while ensuring a constant hit rate. The main effect of
Attention, F(1, 17) = 0.46, p = .507, ηp

2 = .03, and its
interaction with Expectation, F(1, 17) = 0.23, p = .655,
ηp
2 = .01, was not significant.
We have previously found that expectations increase

subjective confidence (Sherman, Seth, et al., 2015), and
on this basis, we hypothesized that prestimulus phase
would modulate the influence of expectations on confi-
dence. To address this at the behavioral level, the next
analysis determined whether this finding was replicated.

Previous work has shown that confidence increases
when the perceptual report (i.e., percept) is congru-
ent relative to incongruent with prior expectations. In
the 25% condition, where Gabor absence is expected,
the expectation-congruent report is “no,” whereas in the
75% condition, where Gabor presence is expected, the

Figure 2. Behavioral results.
(A) Mean contrast at which the
Gabor was presented over the
course of the experiment in
each condition. Asterisks over
levels of expectation represent
significantly higher thresholds
in the 75% than the 25%
condition (main effect).
Asterisks over levels of attention
represent significantly higher
thresholds under full than
diverted attention (main effect).
(B) Effects of attention and
expectation on decision
threshold c. Independent of
attention, decision threshold in
the 25% condition, where
Gabor absence is expected, is
higher than in the 75%
condition, where Gabor
presence is expected. Note that
greater values represent
stronger biases for reporting
target absence. (C) Effects of
attention and expectation
report congruence on
confidence. Congruent
responses are reports of
presence/absence in the 75%/
25% condition and vice versa for
incongruent responses. Confidence is higher for congruent than incongruent reports in both attention conditions, but the effect of congruence is
greater under full attention. The main effects of both attention and congruence are also significant. (D) Effects of accuracy and expectation report
congruence on confidence. Congruent responses are reports of presence/absence in the 75%/25% condition and vice versa for incongruent responses.
Confidence is higher for congruent than incongruent reports for both correct and incorrect responses, but the effect of congruence is greater
in the incorrect case. The main effects of both accuracy and congruence are also significant. Error bars represent within-subject SEM. *p < .05,
**p < .01, ***p ≤ .001.

Sherman et al. 1323



expectation-congruent report is “yes.” The reverse defines
expectation-incongruent reports.

This hypothesis was tested with a within-subject Atten-
tion (full, diverted) × Accuracy (correct, incorrect) ×
Congruence (expectation-congruent, incongruent)
repeated-measures ANOVA under confidence. Results
showed that confidence was higher under full than di-
verted attention, F(1, 17) = 17.67, p = .001, ηp

2 = .51,
for correct than incorrect responses, F(1, 17) = 42.22,
p < .001, ηp

2 = .71, and for congruent than incongruent
decisions, F(1, 17) = 19.07, p < .001, ηp

2 = .53.
As shown in Figure 3C, a significant Attention × Con-

gruence interaction, F(1, 17) = 14.83, p = .001, ηp
2 = .47,

revealed that diverting attention reduced the effect of
congruence on confidence (Mdiff = 4.6%, SEdiff = 1.4%)
relative to full attention (Mdiff = 14.1%, SEdiff = 3.2%).
Congruence still increased confidence in both attention
conditions (diverted: t(17) = 3.25, bootstrapped p =
.006; full: t(17) = 4.41, bootstrapped p = .001).

As shown in Figure 3D, a significant Accuracy × Con-
gruence interaction, F(1, 17) = 8.48, p = .010, ηp

2 = .33,
revealed that the influence of congruence on confidence
was greater for incorrect (Mdiff = 12.0%, SEdiff = 2.6%)
than correct (Mdiff = 6.7%, SEdiff = 2.1%) responses. Cru-

cially, congruence increased confidence in both cases (incor-
rect: t(17) = 4.67, bootstrapped p = .001; correct: t(17) =
3.29, bootstrapped p = .014), indicating that the influence
of congruence on confidence is not confounded by differ-
ences in decisional accuracy.
No other significant effects were found (Attention ×

Accuracy, p = .102, ηp
2 = .15; Attention × Accuracy ×

Congruence, p = .975, ηp
2 < .01). Thus, effects under

confidence reported in Sherman, Seth, et al. (2015) were
replicated: expectations liberalize confidence, and the ef-
fect was weaker (but present) under diverted than full
attention.
In summary, our paradigm successfully manipulated at-

tention and expectation: contrast sensitivity increased in
the presence of full attention, and expectation biased
perceptual decisions. There was a small difference in d0

across levels of expectation but not across levels of atten-
tion. Expectation further increased confidence, such that
participants were more confident in their Gabor detec-
tion reports when that report had been congruent with
their prior expectations.
Although these effects of expectation were present at

the behavioral level, they are not necessarily modulated
by prestimulus brain oscillations. The next analyses first

Figure 3. EEG results. (A) Time–frequency representation of phase opposition between yes and no reports over the eROI for (top) all trials, (middle)
full attention, and (right) diverted attention. The vertical dashed line represents stimulus onset. The color scale represents log-transformed
p values. Regions that survive FDR correction are outlined in white. (B) Relationship between decision threshold c and binned occipital 10 Hz phase
at −119 msec. The blue phase criterion-function represents results from the 25% (expect absent) condition, and the red phase-criterion function
represents results from the 75% (expect present) condition. Gray shading indicates the phase values that maximally predict the influence of
expectation on decision: Decisions are maximally biased toward reporting “no” in the expect 25% condition, but toward “yes” in the 75% condition.
Shaded outlines represent within-subject SEM. (C) Relationship between confidence and prestimulus 10 Hz phase at −119 msec. Congruent
responses are reports of presence/absence in the 75%/25% conditions and vice versa for incongruent responses. Confidence significantly fluctuates
with phase for both congruent (green) and incongruent (red) reports. Shaded regions represent within-subject SEM. (D) Relationship between
detection sensitivity d0 and prestimulus 10 Hz phase at −119 msec for the full (left) and diverted attention (right) conditions. Sensitivity does not
fluctuate with phase in either condition. Shaded regions represent within-subject SEM.
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determined whether oscillatory phase predicts percep-
tual decision irrespective of expectation and then deter-
mined whether the predictive value of oscillatory phase
reflects prior expectations.

Perceptual Decision Is Predicted by Occipital
Alpha Phase

Before addressing the question of whether the effect of
expectation on decision is modulated by prestimulus
phase over visual regions, we checked that prestimulus
phase predicted perceptual choice, irrespective of expec-
tation. Analyses were restricted to the occipital electrode
(O1, Oz, or O2) that showed the greatest poststimulus
response to the Gabor task. This method gave, for each
participant and for each of the two sessions, a single elec-
trode (eROI) that was involved in early poststimulus pro-
cessing. eROIs were extracted by selecting the occipital
electrode with the greatest ERP amplitude for hit relative
to miss trials (Mdiff = 0.75 μV, SDdiff = 0.64 μV; see
Methods for details).
The predictive value of phase in perceptual decision

was assessed using the measure phase opposition (PO).
PO is the average of PLVs for two responses—here, yes
and no (Vanrullen et al., 2011)—and therefore reflects
the extent to which prestimulus phase predicts sub-
sequent choice (see Methods for details). For response
R and complex wavelet coefficients C, PLV and PO are
defined as

PLVR ¼ 1
n

X

n

C Rð Þ
C Rð Þj j

�����

����� POR1;R2 ¼
PLVR1 þ PLVR2

2

PO values for each time–frequency point were calculated
separately for each level of attention and expectation and
subsequently collapsed across expectation conditions.
This was done because for this initial analysis we were
seeking time–frequency regions in which EEG phase pre-
dicted decision, but not explicitly seeking time–frequency
regions in which the influence of phase depended on
expectation. Averaging over conditions means phase
effects are still detectable if expectation changes (or
even reverses) the preferred phase for yes or no
responses. Interactions between phase and expectation
were run in a separate follow-up analysis, thereby
avoiding “double-dipping.”
To obtain p values, PO values were compared with the

null distribution by pseudorandomly allocating a behav-
ioral response to each phase angle at each time–frequency
point. This process was repeated for each session and
each condition 2000 times (8000 in total), giving 1.8 ×
1070 bootstrapped samples over all participants. The
p values were FDR-corrected over the entire prestimulus
region (−1000 msec to stimulus onset) and over all
frequencies.
This analysis revealed a region of significant phase op-

position in the prestimulus alpha range over all trials,

which reached maximum significance at 10 Hz, 119 msec
before stimulus onset ( p = 10−7, αFDR = 10−2.6;
Figure 3A, left). This means that prestimulus occipital
alpha phase predicts yes versus no responses. Given that
phase-modulation of perceptual hit rate has been shown
to be dependent on attention (Busch & VanRullen,
2010), we then split phase opposition values into two
separate maps, one for each level of attention. Signifi-
cant phase opposition was present under full attention
( p−119 msec, 10 Hz = 10−4, αFDR = 10−2; Figure 3A, center)
and was indeed reduced in extent (but present) under di-
verted attention ( p−119 msec, 10 Hz = 10−5, αFDR = 10−3;
Figure 3A, right), consistent with previous work.

This result shows that prestimulus occipital alpha phase
predicted decision, but we do not yet know whether de-
cision bias or detection sensitivity was fluctuating. This
question was addressed in the next section.

Prestimulus Occipital Alpha Phase Predicts
Decision Thresholds

Previous studies on prestimulus phase have not been
able to separate sensitivity from decision bias because
phase analyses have only time-locked to target-present
trials. Whereas target-absent trials usually have no obvi-
ous reference point for the phase analysis (when using
a randomized intertrial interval), here the onset of the
search array served as a reference point for both Gabor-
present and Gabor-absent phase determination. This
allowed us to calculate the theoretically independent
measures c (decision threshold) and d0 (detection
sensitivity).

Computing these values required binning phase angles
from each trial. We needed data from just one time point,
because pooling phase angles over time points results in
associating multiple, systematically rotating phase angles
with a single behavioral response. Similarly, phase angles
from differing frequency bands cannot be compared in
terms of their position in an oscillation. We extracted
phase angles from each epoch from the eROIs at the
−119 msec, 10 Hz time–frequency point: the point of
maximal PO significance. Each phase angle was then
binned into one of six phase bins.

By considering responses on those trials, this gave, for
each participant, an associated set of hits, misses, false
alarms, and correct rejections as a function of phase
bin. Trials were further categorized according to experi-
mental condition. In turn, for each participant, we could
calculate d0 and c as a function of phase bin, attention,
and expectation. Note that in splitting trials according
to phase bin, the resulting six values of c per condition
will not average exactly to the single value of c per con-
dition when computed irrespective of phase bin.

First, we asked whether prestimulus phase predicts de-
cision threshold by running an Attention (full, diverted) ×
Expectation (25%, 75%) × Phase bin (1 to 6) repeated-
measures ANOVA on decision threshold c. Only interactions
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with phase bin are reported. This analysis revealed no
significant main effect of Phase, F(5, 85) = 0.66, p = .670,
ηp
2 = .04, no significant Attention by Phase bin interaction,

F(5, 85) = 0.38, p= .862, ηp
2 = .02, and no significant three-

way interaction, F(5, 85)=0.66, p= .650,ηp
2 = .04. Critically,

there was a significant two-way interaction between Expec-
tation and Phase bin, F(5, 85) = 2.64, p = .029, ηp

2 = .13.
This interaction is depicted in Figure 3B and is such that,

as hypothesized, (1) c appears to oscillate with phase in
both expectation conditions and (2) the two phase-criterion
functions appear to be in antiphase. These curves being in
antiphase mean that the range of phase values related to
highest c in the 25% condition (conservative, expectation-
congruent) are similar to the minimum values for c in
the 75% condition (liberal, expectation-congruent). This
range is consistent with what we would expect from the
optimal phase for perceptual priors to influence percep-
tual decision. At π rad away from this range, phase pre-
dicted the most liberal responses in the 25% condition
(incongruent) and the most conservative responses in
the 75% condition (incongruent). This suggests that in
this range of phase the top–down priors exert their weak-
est influence and that the relative effect of perceptual
priors is minimal. We assume that, here, the influence
of bottom–up signals is therefore maximal.

Supporting part of our first hypothesis, this indicates
that, independent of attention, the extent to which pre-
stimulus occipital alpha phase predicted decision thresh-
old differed in the 25% (expect absent) and 75% (expect
present) conditions.

Figure 3B suggests that c oscillates in both conditions
(both functions are sinusoids), but that the same phases
predict opposing responses (the functions are in anti-
phase). However, we have not yet determined this statis-
tically. This was the aim of our next two analyses.

Prior Expectations Change the Response Predicted
by Prestimulus Alpha Phase

Does phase predict c in both expectation conditions? To
check whether the phase criterion function were sinu-
soids, we tested whether the distance between the peak
and trough of each function was π rad. We used a circular
v test, which tests the hypothesis that a set of angles
(here, the peak-to-trough distance) is significantly clus-
tered about some specified angle (here, π rad). This anal-
ysis revealed that, indeed, the peak-to-trough distance
was approximately π rad in both the 25% (v = 43.98,
p < .001) and 75% (v = 12.56, p = .044) conditions. This
means that both functions are sinusoids and, therefore,
that phase predicts criterion in both the 25% and 75%
conditions.

Next we asked whether the two phase criterion func-
tions were in antiphase. This was the final, key step in
testing whether expectations were reflected in prestimu-
lus phase. A circular v test, testing whether the peak-to-
peak difference between the two phase criterion func-

tions was significantly clustered about π rad, revealed this
to be the case, v = 43.98, p < .001. Thus, the two func-
tions are in antiphase and the same phases that predict
“yes” when expecting target presence predict “no” when
expecting target absence. These phases are therefore
those at which expectations exert their greatest effect
on decision.
In summary, we have supported our first hypothesis:

that the influence of expectations on decision is oscillat-
ing with prestimulus alpha phase. We do not claim that a
decision threshold is set at or before stimulus onset, be-
cause clearly, sensory evidence is not yet available to the
visual system. Rather, our data show that, before stimulus
onset, ongoing alpha phase biases the position of a deci-
sion threshold that is set later in time.

Rhythmic Fluctuations in Confidence

Our second hypothesis was that prestimulus alpha phase
would also predict the influence of expectations on con-
fidence. Behaviorally, confidence increases for expected
percepts. Consistent with this, our behavioral analyses
showed that confidence for expectation-congruent re-
ports (i.e., reporting “yes” in the 75% condition or report-
ing “no” in the 25% condition) was higher than for
incongruent reports (i.e., reporting “no” in the 75% con-
dition or reporting “yes” in the 75% condition). There-
fore, if phase predicts the influence of expectations on
confidence, then there should be a range of phase an-
gles, which predict high confidence when congruent re-
ports were made but low confidence when incongruent
reports were made. This set of phases would be the op-
timal phases for expectations to shape confidence.
The 4-point scale was collapsed into a binary confident/

guess report by performing a mean split on individual
participants’ reports. Next, we computed participants’ per-
centage of decisions reported with high confidence, as a
function of phase bin, attention, and expectation-response
congruence.
An Attention × Congruence × Phase bin repeated-

measures ANOVA under confidence revealed a significant
main effect of Phase bin ( p < .001), but the phase-
confidence function was not sinusoidal and therefore does
not reflect the existence of an optimal phase for high
confidence. The three-way interaction was also nonsignif-
icant ( p= .198, ηp

2 = .08). Crucially, the analysis did reveal
a significant two-way Congruence × Phase bin interac-
tion, F(5, 85) = 4.10, p = .002, ηp

2 = .19.
To break down this interaction, we tested whether

confidence oscillated with phase at either level of congru-
ence. As in the analysis under decision threshold, circular
v tests tested the peak-to-trough difference of the two
phase-confidence functions against π. These revealed
that subjective confidence oscillated with prestimulus
alpha phase for both expectation-incongruent, v = 34.56,
p< .0001, and expectation-congruent, v= 25.13, p< .001,
responses (Figure 3C).
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As was the case for the decision threshold analysis, vi-
sual inspection of the figure suggests that the two func-
tions are in antiphase: Phases associated with relatively
high confidence for congruent reports are associated
with relatively low confidence for incongruent reports.
This was confirmed statistically with a circular v test that
showed the peak-to-peak distance between the two
phase-confidence functions to be significantly clustered
about π rad, v = 43.98, p < .0001. In turn, this analysis
indicates that the two functions are in antiphase.
Interestingly, the phase at which congruent yes/no re-

sponses are most likely appears similar to that at which con-
gruencemaximally predicts confidence (see Figure 3C andB,
respectively): the peak of the phase expectation function
(the 25% minus the 75% sinusoid) appears associated with
high confidence for congruent reports, but low confidence
for guess reports.
In summary, our results suggest that, at phases where

prior expectations exerted stronger influences on deci-
sion, confidence was high for the expectation congruent
report, but low for expectation-incongruent reports. This
means that when the influence of priors was strong, con-
fidence increased for predicted perceptual events but de-
creased when expectations were violated. Together with
the results under decision threshold, these data suggest a
10-Hz alternation in the extent to which perceptual priors
bias both objective and subjective decision-making.

Alpha Phase Does Not Predict
Perceptual Sensitivity

Confidence is typically correlated with accuracy, such that
participants are more confident when they are correct
than when they are incorrect. Previous work has impli-
cated prestimulus alpha phase in the detection of percep-
tual stimuli (Mathewson et al., 2012; Dugué, Marque, &
VanRullen, 2011; Rohenkohl & Nobre, 2011); however,
previous studies have not been able to time-lock the phase
analysis to target-absent as well as target-present trials. In
turn, it is unclear whether these results reflect alternations
in decision biases or in perceptual sensitivity. If sensitivity is
predicted by prestimulus alpha phase, our results under
confidence may simply reflect fluctuations in d0.
Our results under c implicate alpha phase in deci-

sional biases; however, to ascertain whether alpha phase
is also implicated in sensitivity, we ran an Attention ×
Expectation × Phase bin rmANOVA under d0. This re-
vealed no significant main effect of Phase bin, F(5, 85) =
1.65, p = .156, ηp

2 = .09, nor any significant interactions
(Attention × Phase: F(5, 85) = 0.86, p = .507, ηp

2 = .05,
Figure 3D; Expectation × Phase F(5, 85) = 0.37, p = .868,
ηp
2 = .02; Attention × Expectation × Phase, F(5, 85) =

0.88, p = .499, ηp
2 = .05). The relationship between d0,

Phase, and Attention is depicted in Figure 3D.
An analogous Bayesian repeated-measures Attention ×

Expectation × Phase bin ANOVA was run on JASP using a
Cauchy prior of 0.8 HWHM. This revealed evidence for

the null hypothesis of no main predictive effect of Phase
(BF = 0.025) as well as no predictive effect of Phase that
depended on Attention (BF = 0.003), expectation (BF =
0.001), or both Attention and Expectation (BF < .0001).

Previous studies have found that it was useful to re-
align each participant’s phase-hit rate function to correct
for individual differences in optimal phases for perceptu-
al sensitivity (Busch & VanRullen, 2010). Even using this
method, however, we found no evidence for Phase pre-
dicting d0 under either full ( p = .787) or diverted ( p =
.407) attention.

Together, these data robustly show that prestimulus
alpha phase does not predict detection sensitivity. Rather,
the data support the interpretation that alpha phase reflects
fluctuations in objective and subjective decisional biases.

DISCUSSION

The present experiment implemented a paradigm that
both separated the influences of expectation from those
of attention and allowed prestimulus oscillations to be
time-locked to both target-absent and -present trials. Crit-
ically, this design enabled us to compute SDT measures
as a function of phase and condition and, in turn, sepa-
rate phase modulation of detection sensitivity from phase
modulation of decision threshold.

Our results show that top–down expectations rhythmi-
cally bias perceptual decision-making in the prestimulus pe-
riod, such that the extent to which expectations biased
decision was predicted by the phase of prestimulus occip-
ital alpha oscillations. The data revealed that decision
threshold was predicted by phase both when expecting tar-
get presence and when expecting target absence. However,
expectation flipped the relationship between phase and cri-
terion (decision threshold), that is, the phase criterion func-
tions were in antiphase: the same phases that predicted
biases toward reporting “no” when expecting target ab-
sence predicted biases toward reporting “yes”when expect-
ing target presence. These phases correspond to the
optimal phases for expectations to influence perception.

Importantly, we do not claim that perceptual priors en-
trained alpha oscillations, as is the case for temporal pre-
dictions (e.g., Samaha, Bauer, Cimaroli, & Postle, 2015;
Rohenkohl & Nobre 2011). Rather, priors determined
whether a specific phase angle facilitated a “yes” or a
“no” judgment. This effect of prestimulus alpha phase
is interpreted as evidence for fluctuations in state of
the visual system before stimulus onset affecting the pro-
pensity to use prior evidence poststimulus at the deci-
sion stage. Speculatively, this could occur if prior
evidence for or against target presence is periodically
transmitted to visual areas, in turn resulting in periodic
changes in the baseline from which evidence accumula-
tion begins (Summerfield & Egner, 2009).

Fluctuations in the influence of expectation on objective
decisions were accompanied by fluctuations in subjective
confidence. For incongruent reports, subjective violations
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of expectation were associated with degrees of confidence
that tracked the influence of the prior expectation: when
perceptual priors exerted greater effects on decision,
subjective violations of expectation were associated with
greater subjective uncertainty. Moreover, the phase–
confidences function for congruent and incongruent re-
sponses were in antiphase: The phase that predicted great-
est uncertainty for incongruent reports also predicted
highest confidence for congruent reports. Together, these
results extend previous work, demonstrating that confi-
dence evolves with the decision variable at early process-
ing stages (Fetsch et al., 2014; Kiani & Shadlen, 2009) by
showing that decision and confidence are jointly shaped
by top–down influences. As is the case for yes/no deci-
sions, we interpret these results as evidence for biases in
the early processing of sensory signals (e.g., changes in start-
ing point of evidence accumulation) modulating reported
subjective confidence at late stages of the decision-making
stream.

Consistent with previous work, we found that alpha
phase modulation of perception is greater with attention
than without (Landau & Fries, 2012; Busch & VanRullen,
2010), though here, still present under diverted atten-
tion. Critically, although previous evidence has demon-
strated alpha modulation of perceptual hit rate (Landau
& Fries, 2012; Dugué et al., 2011; Busch et al., 2009;
Mathewson et al., 2009), it has not been possible to ascer-
tain whether changes in hit rate have been driven by
changes in sensitivity or bias. Here we implicate alpha
oscillations in biasing perceptual decisions, but not in-
creasing sensitivity. Critically, the influence of alpha
phase on decision is modulated by expectations. Our
data also extend previous research that has revealed that
the influence of expectation on decision is predicted by
prestimulus beta-band power over both motor (De Lange
et al., 2013) and somatosensory (Van Ede, Jensen, &
Maris, 2010) cortices, as well as by BOLD responses in a
range of cortical areas (Rahnev, Bahdo, de Lange, & Lau,
2012; Hesselmann, Sadaghiani, Friston, & Kleinschmidt,
2010; Hesselmann, Kell, & Kleinschmidt, 2008; Summerfield
& Koechlin, 2008). Prestimulus signals biasing decision at
early stages of visual processing (i.e., in sensory cortices)
has not, to our knowledge, been shown before. Our results
therefore support an early and critically rhythmic influence
of expectations on decision.

Top–down influences are increasingly modeled within
Bayesian perspectives frameworks (Mathys et al., 2014;
Clark, 2013; Hohwy, 2013; Daunizeau et al., 2010; Ma,
Beck, Latham, & Pouget, 2006; Kersten, Mamassian, &
Yuille, 2004). Here, perception is described as a Bayesian
inference on sensory causes. A core tenet of these frame-
works is that the prior probability of sensory causes will
constrain inference accordingly, and so probable or “ex-
pected” sensory causes are more likely to be chosen and
thus perceived (Yuille & Kersten, 2011; Spratling, 2008;
Knill & Pouget, 2004; Lee & Mumford, 2003). A plausible
implication of this view is that such prior probabilities

should be reflected in the state of the brain in the presti-
mulus period. Consistent with this, we have shown that
the influence of priors on decision oscillates with presti-
mulus alpha phase.
One possible explanation for these findings is that al-

pha oscillations orchestrate the communication of prior
expectations to visual cortex. On this view, rhythmic in-
fluences of expectation on decision threshold would re-
flect fluctuations in the prior probability of the reported
perceptual decision. However, an alternative view is that
our results reflect fluctuations in the weighting of priors
on decision, rather than the prior probability itself. On
this alternative view, alpha phase reflects the attentional
state of the system, consistent with previous theoretical
work ( Jensen, Bonnefond, & VanRullen, 2012; Palva &
Palva, 2007), so that priors are assigned a greater weight
on perceptual decision when sensory signals are expected
to be unreliable. Here, perceptual expectations would in-
crease or decrease the excitability of relevant neural pop-
ulations or gain according to whether a target is expected
to appear or not. In both cases, prestimulus occipital al-
pha phase modulates the relative weighting of prior ex-
pectations and sensory data; however, our data cannot
discriminate between these two views, and we leave this
question open to future research.
In summary, we have described evidence indicating a

periodic influence of perceptual priors on both objective
(detection) and subjective (confidence) decisions, predicted
by the phase of prestimulus occipital alpha oscillations.
This rapid and periodic alternation between top–down
and bottom–up influences in visual areas extends existing
data implicating alpha oscillations in top–down processing
(Von Stein, Chiang, & König, 2000). Together, our data
suggest that alpha oscillations may periodically transmit
perceptual priors and, in turn, reveal a plausible neural
mechanism by which prior information may subserve
top–down modulation of early visual processing: alpha os-
cillations may orchestrate the reciprocal exchange of pre-
dictions and prediction errors.
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