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Abstract 

The physical conception of energy is a natural and general approach to describe functional interactions in the brain 

at different levels starting from studies of molecular interactions up to the integrative studies of cognitive 

neuroimaging. In this article, we describe the representation of the brain as a fluctuating energy field, which 

adaptively reflects the environment.  

Within this neuroenergetic conception, we indicate a physically solid approach to the problem of the link between 

brain function and information processing - transmission and integration of information between neuroglial 

populations is coupled with the corresponding energy increase used for information encoding. We develop the 

integrative neuroenergetic model of face recognition, in which the input to the model tries to modify the 

fluctuations of activity according to the free-energy minimization principle corresponding to metabolic efficiency. 

Once the spatial path of integration in neural activity is known, the processed information can be decoded by 

spatial differentiation. Energy-based feedback with activity rescaling does not influence the possibility of decoding 

the information. 

The model provides further evidence that the conception of energy facilitates at both the computational and 

conceptual levels the understanding of brain function and its relation to cognition.  
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1. Introduction 

1.1 Brain energy as a measure of brain function 

One can claim that the physical concept of energy is 

useful in neuroscience because it may provide an 

interface between the brain and cognition (Strelnikov, 

2014a). Indeed, energy characterizes not a physical 

object itself but interactions between the parts of this 

object as well as its interactions with other objects. 

Thus, the conception of energy provides a key to 

brain function where "function" is considered as a 

certain interaction between brain parts at any level – 

from the macroscopic anatomical parts of the brain to 

the interactions of molecules of the brain.  In this 

article, we consider cognitive neuroenergetics from 

the experimental and conceptual points of view, then 

we include the discussed principles into a model. 

Though some equations are provided in Materials and 

methods, they can be skipped by a non-computational 

reader.  

Sensory input is a way to perceive changes of energy 

in the external world. A change of energy in the 

receptor molecules is induced by the change of 

energy in their surroundings. During further 

propagation of sensory information, the initial 

molecular change of energy is amplified using energy 

sources of neuroglial populations, mainly glucose, 

which comes from the blood (see (Magistretti and 

Allaman, 2015) and (Jha and Morrison, 2018) for the 

reviews of neuroglial metabolism). It is evident that 

starting from receptor molecules the transforming 

influence of sensory input needs to do some work to 

change the preceding state of molecules and cells, for 

example, to change their spatial positions, charges 

etc. Given that further propagation of this sensory 

input is supported by energy sources, the biological 

system needs to minimize its energy expenses (Niven, 

2016; Niven and Laughlin, 2008). Comparing the 

energy needed to produce action potentials for a wide 

range of channel densities and kinetic parameters in a 

wide range of neurons from several species, it was 

demonstrated that the ion channels minimize energy 

expenditure in their normal range of spiking 

(Hasenstaub et al., 2010). The authors suggest that 

energy minimization subject to functional constraints 

may be one of the unifying principles in the brain. In 

information theory, a bit is the smallest unit of 

information, which can hold only one of two values: 

0 or 1. It was estimated that it costs 104 ATP 

molecules to transmit a bit at a chemical synapse, and 

106 - 107 ATP for graded signals in an interneuron or 

a photoreceptor, or for spike coding (Laughlin et al., 

1998). Given such high energy demands for 

information transmission, the authors concluded that, 

in noise-limited signalling systems, a weak pathway 

of low capacity transmits information more 

economically, which promotes the distribution of 

information among multiple pathways. Considering 

energy economy in the brain, Bullmore and Sporns 

(Bullmore and Sporns, 2012) suggested that brain 
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organization is shaped by an economic trade-off 

between minimizing costs and allowing the 

emergence of adaptively valuable topological 

patterns of anatomical or functional connectivity 

between multiple neuronal populations.  

On the other hand, the work to change neuroglial 

activity is minimal when sensory input arrives to 

neuroglial populations, whose activity has already the 

closest resemblance to the activity needed to code this 

input – predictive neuroglial coding. From the 

neurophysiological perspective, this corresponds to 

the findings that high energy efficiency is achieved at 

more depolarized spike threshold (Yi et al., 2015). 

The system’s state retains information about past 

environmental events, and a part of this information 

is predictive of future events. The remaining 

nonpredictive information reflects model complexity 

that does not improve predictive power, and thus 

represents the ineffectiveness of the model (Still et 

al., 2012). Free energy was proposed as a reflection 

of the resemblance between the predictive coding and 

the sensory input (Friston and Stephan, 2007). In 

literature, there is an information theoretic 

(variational) and thermodynamic (Helmholtz) free-

energy formulations of neuroglial processing, which 

can be related in a fundamental way through 

complexity minimization as discussed in Sengupta et 

al.(Sengupta et al., 2013). It follows that the 

minimization of work needed to propagate and treat 

the sensory input corresponds to the free-energy 

minimization.  

Increased energy in the neuroglial population is the 

same thing as increased activity and can be 

understood as an increase in the firing rate of neurons, 

an increase of the electromagnetic field energy or as 

an increase in oxygen and/or glucose consumption 

leading to the increase of the regional cerebral blood 

flow. All of these views are possible because 

electromagnetic and molecular energies are highly 

coupled in the brain. With this in mind, we earlier 

defined the term "activation" for the brain as 

information-driven reorganization of energy flows in 

and among populations of neuroglial units, leading to 

a total increase of energy utilization in these 

populations. Energy ‘‘flows” are coherent spatial and 

temporal changes in the energy turnover of neuroglial 

units accompanying information treatment 

(Strelnikov, 2010). The various, and often indirect, 

methods of practical measurement notwithstanding, 

brain activation is best understood as a level of energy 

in an ensemble of neuroglial units, with different 

methods more or less accurately reflecting this level. 

1.2 Energy amplification as information/energy 

coupling 

The amplification of energy changes starts from the 

receptor molecules and is needed for several reasons. 

During integrative processes, there is an increase of 

information transmission, which is accumulated from 
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one stage to another in the stream of sensory 

processing. The information is coded by the 

interactions between different molecules and their 

parts leading to the increase of energy at each more 

integrative stage of processing with respect to the 

previous less integrative one (Huang et al., 2017; 

Kukushkin and Carew, 2017; Marx and Gilon, 2012). 

To understand brain function, it is important to study 

the coupling between energy amplification and 

information integration. One can take any small 

volume of the brain and characterize various 

interactions of molecules within it as a certain 

summary level of energy. If for each point (i.e., a 

small volume of the brain) one attributes a certain 

energy level, one can consider the brain as an energy 

field in the physical sense where each point has a 

certain level of energy. According to the experimental 

data of neuroelectrophysiology, it is possible to get 

the energy and energy function of neurons (Wang et 

al., 2015), and then calculate the neural energy field 

related to cognitive processes. Further on, one can 

consider directions of energy changes in time and in 

space for each point with respect to the surrounding 

points (Strelnikov and Barone, 2012).  

 If one considers the summary amount of energy at 

each integrative stage of sensory processing, the 

difference in the energy levels between the stages 

should correspond to the difference in the amount of 

information coded by neuroglial populations at these 

stages (Figure 1). This can be considered a 

biophysical principle because it is physically 

impossible that more information content is 

maintained by the same or lesser amount of energy; 

the encoding of the high amount of information in the 

integrative neuroglial populations should lead to the 

increase in their energy turnover. We modelled this 

relation by an integrative model, which permits 

information decoding using spatial differentiation of 

the obtained activity (Strelnikov, 2014b) and 

suggested that spatial differentiation of brain activity 

may be a way to obtain virtual spaces with internal 

representations. The coupling between energy 

turnover and information integration was recently 

demonstrated for fMRI activity where there was an 

amplification of local changes from low-level 

acoustic cortical regions to high-level cortical regions 

that accumulate and integrate information (Yeshurun 

et al., 2017).  

On the basis of thermodynamic reasoning (e.g., 

(Ortega and Braun, 2013)), it can be shown that 

changes of free energy are related to changes in 

information by a simple equation: 

                                  ∆𝐹 = 𝑘𝑇ln𝑐                            (1) 

where ∆𝐹 is a free-energy difference, 𝑘 is the 

Boltzmann constant and T is temperature. At constant 

temperature T, 𝑘𝑇 can be interpreted as the 

conversion factor between units of energy and 

information. 
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Generally speaking, energy is a certain measure about 

interactions of objects or their parts. From this point 

of view, it is quite natural that information about 

interactions of sensory molecules with the external 

world can be quantified as measurable energy of these 

interactions. These interactions are further 

transmitted via measurable energy changes of 

neuroglial populations. By “measurable” we mean 

that there is a technical possibility of such measures, 

even though limitations can exist at the current stage 

of progress. 

However, any energy increase is dissipated with time 

as heat. Finally, it would lead to the loss of 

information about the initial change of the receptor 

energy with a corresponding emission of heat 

(Landhauer theorem). Dissipation of energy 

decreases the predictive neuroglial information: there 

is a fundamental equivalence between the dissipation 

of energy and the nonpredictive information carried 

by the system (Still et al., 2012). Thus, the dissipation 

should be compensated by the energy sources of the 

body. 

A constant increase of energy turnover due to 

information integration can lead to the required levels 

of energy, which are beyond the possibilities of 

glucose and oxygen supply to the neuroglial 

populations. This explains a large network of 

feedback mechanisms, which rescale energy 

differences between the stages of information 

integration to match the physiological capacities of 

energy turnover. Neuroenergetic consideration 

provides a natural explanation, at least partly, for the 

necessity of neural feedback. 

At each stage of processing, information is analysed 

with respect to the expected features and the results 

are transmitted to the neuroglial populations at the 

next stage. A certain number of energy profiles for 

predictive coding already exist in the baseline activity 

fluctuations of the system. Energy minimization 

means that from these energy profiles, sensory input 

chooses and reshapes the one with minimal deviation 

from perceived information. 

Importantly, objective information measured in bits 

should not be confused with subjective information 

based on previous experience and hardly measurable. 

E.g., looking at the same picture with the same 

amount of objective information one person can say 

“a woman” and another person “my mother”. 

However, experience is also formed by the objective 

physical information received in the past. 

Most of the existing theories of neural coding are 

based on electric properties of neurons. At present, it 

is impossible to evaluate, which of these theories 

satisfy the above-mentioned principles of energy 

turnover in the brain (energy minimization, 

information/energy coupling, energy-based 

feedback). One needs to evaluate these coding 

theories on the basis of their correspondence to the 

energetic turnover in neuroglial populations in 
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response to energy changes in receptors. To deal with 

this problem, Wang et al. (Wang et al., 2017) recently 

calculated neural energy supply and consumption 

based on the Hodgkin-Huxley model during firing 

action potentials and subthreshold activities using 

ion-counting and power-integral model. After 

introducing a synapse energy model, this line of 

research could be generalized to energy calculation of 

a neural network and help estimate neural coding 

theories in terms of energy turnover. Based on the 

Hodgkin–Huxley equation, Wang et al.  (2018) 

indicated that the electrophysiological activities of 

neurons are restricted by the energy levels in the brain 

and modulated by the balance between energy 

absorption and energy expenditure. In the Hodgkin–

Huxley model of the squid axon, optimizing the 

kinetics or number of Na+ and K+ channels can 

whittle down the number of ATP molecules needed 

for each action potential by a factor of four (Sengupta 

et al., 2010). The authors claim that the temporal 

profiles of the currents underlying action potentials of 

mammalian neurons are nearly perfectly matched to 

the optimized properties of ionic conductances so as 

to minimize the ATP cost. For a single postsynaptic 

neuron, Moujahid et al. (2011) showed that maximum 

energy efficiency, measured in bits of mutual 

information per ATP molecule, requires maximum 

energy consumption. On the contrary, for groups of 

parallel postsynaptic neurons the energy efficiency of 

the transmission presented clear maxima at relatively 

low values of metabolic energy consumption. Kostal 

and Kobayashi (2015) investigated a single-

compartment Hodgkin-Huxley type neuronal model 

under the spike-rate coding scheme and addressed 

how the metabolic cost and the decoding complexity 

affects the optimal information transmission. They 

found that the sub-threshold stimulation regime, 

although attaining the smallest capacity, allows for 

the most efficient balance between the information 

transmission and the metabolic cost. Kim (2018) 

adopted the Hodgkin-Huxley neurons as biophysical 

neural correlates that form the basic perceptual units 

in the brain and used Hamiltonian mechanics to 

demonstrate the minimization of free energy, which 

he considered equivalent to the minimization of 

sensory uncertainty about an unpredictable 

environment. The biophysical energy proposed by 

Wang and Zhu (2016) can be used to simulate both 

the activity of neurons and of large-scale cortical 

networks.  

 

2. Material and methods  

We develop here the hierarchical feed-forward model 

that we proposed (Strelnikov, 2014b), which 

comprised two networks. The first network consisted 

of two layers and was trained to perform integration 

by small parts of the input. The second network 

consisted of 7 layers and continued the integration: 

using the rule that the integral of the sum equals the 
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sum of the integrals, it summed up the results of the 

first network. These networks perform spatial 

integration of the presented images (Figure 1).  

 

Figure 1. The principle of information and energy coupling during spatial integration. 

The scheme illustrates how each new amount of information is added to the existing amount and transmitted 

further to the other neuroglial population. Each arrow summarizes the ensemble of synaptic and ephaptic inputs 

from one neuroglial population to another. Different amounts of the input information are colour-coded. An 

increase in the coded amount of information in each structure is coupled with an increase of its energy (from 

black to white). The voxel on the right represents the most integrative structure, which receives all the 

information. It requires the highest amount of energy to code information in molecular structures.  

Thus, the activity of this network reflects the 

information-energy coupling principle. The high 

performance and reliability of integration by the 

network made it possible to decode the input images 

by mixed spatial differentiation of the activity 

patterns. 

Activity in two dimensions, in the point (l,m) given 

input I(x,y) is calculated as: 

𝑎𝑙𝑚 = 𝑘𝑇 ∫ ∫ ln(𝐼(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦                      (2)
𝑚

0

𝑙

0

 

 

If activity in 3D, in the point (l,m,n), given input 

I(x,y,z) is needed, it can be calculated 

correspondingly: 

 𝑎𝑙𝑚𝑛 = 𝑘𝑇 ∫ ∫ ∫ ln(𝐼(𝑥, 𝑦, 𝑧))
𝑛

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑚

0

𝑙

0

       (3) 

 

The inverse calculations, to restore input from the 

two-dimensional activity: 

ln(I(x, y)) =
1

𝑘𝑇

𝛿𝑎 (𝑥,𝑦)

𝛿𝑥𝛿𝑦
                                                       (4) 
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If the input was three-dimensional: 

ln(I(x, y, z)) =
1

𝑘𝑇
 
𝛿𝑎 (𝑥,𝑦,𝑧)

𝛿𝑥𝛿𝑦𝛿𝑧
                                                 (5) 

 

Equivalently, with gradient projections for two 

dimensions: 

ln(I(x, y)) =
1

𝑘𝑇
∇𝑥∇𝑦𝑎 (𝑥, 𝑦)                               (6) 

 

Or for three dimensions: 

ln(I(x, y, z)) =
1

𝑘𝑇
∇𝑥∇𝑦∇𝑧𝑎 (𝑥, 𝑦, 𝑧)                     (7) 

 

The order, in which partial derivatives are taken, does 

not change the result of mixed differentiation. As 

gradient functions already exist in Python and 

Matlab, the gradient approach is easy to implement. 

The two-dimensional model is presented as the basis 

to explore its functionality with convenient 

visualisations. 

Here, we present a further development of this model 

so that alongside information/energy coupling, it 

includes some other important neuroenergetic 

principles (Figure 2).  

 

Figure 2. The integrative neuroenergetic model. 

This is a commented screenshot of the model, which is better seen as a video in Supplementary materials or 

on the internet (https://www.youtube.com/watch?v=kW9BzPiKEwQ). A set of images is presented one by 

one to the fluctuating activity of the model, which comprises 300 internal representations of face patterns. The 

internal representation, which has the smallest difference with the representation of the input, is decoded by 
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spatial differentiation from the model activity. For each presented face, a graph indicates its energy difference 

with face patterns in the activity fluctuations (percent of the maximum energy level in the fluctuations). Thus, 

the minimum (red point) in the graph represents the face pattern most resembling the presented face. With 

each presentation of a face, the corresponding pattern in the fluctuations of the model becomes closer to the 

pattern imposed by the presenting face leading to the lower minimum in the graph. When the minimum is at 

zero, the face is memorized and is exactly reproduced the next time it is presented. The decoded face here 

represents the activity, which is slightly modified during the first presentations. 

Firstly, we included the above-described energetic 

feedback, which rescales the levels of activity in the 

network if at some point of information integration 

the required amount of energy is not supported by the 

physiological mechanisms. One can predict that  this 

rescaling does not influence the possibility of 

decoding the stimulation by differentiating the 

activity pattern. The modelled feedback mechanism 

illustrates that information coding may be 

independent of the level of energy per se but 

dependent on the differences of energy between the 

points (although of course some physiological 

limitations can exist for this principle as well). 

In line with the free energy minimization principle 

(Friston and Stephan, 2007), we believe that 

spontaneous activity serves to maintain the 

representations of the expected stimulation based on 

previous experience. From the physical standpoint, 

free energy reflects a difference between internal 

energy and entropy at given temperature. It follows 

that minimizing free energy can mean not only 

minimizing internal energy but also maximizing 

entropy. Entropy in this case reflects the number of 

possible states of internal representations, which code 

a variability in the external world – for example, a 

variability of faces, of car sounds etc. Thus, this 

variability is not just a disorder but has adaptive 

significance. The variability is coded by temporal 

fluctuations of the presented model, which includes 

the integrative activity patterns for 300 face patterns 

from the MIT face database (Rowley et al., 1998). A 

number of other face patterns from the MIT face 

database are taken as input to the model. 

 

3. Results and Discussion 

3.1 Pattern recognition and predictive 

coding 

The input to the model tries to modify the fluctuations 

of activity (Figure 2) according to the above 

discussed neuroenergetic principles. Among all 

activity patterns in the fluctuations the easiest to 

modify is the pattern which has the closest energy 

levels to the activity imposed by the input. The graph 
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in the model interface reflects deviations of different 

patterns of activity from the activity imposed by the 

input. The red point on the curve indicates the pattern 

with the minimal deviation. Differentiation of this 

pattern reveals that it codes the most similar input 

from those coded in the fluctuations.  

With each consecutive presentation of the new input, 

it modifies the initial activity pattern so that finally by 

differentiating it we obtain the image of the input 

memorized in activity fluctuations. The next time this 

input is presented, the minimum on the graph of 

energy quickly indicates the corresponding activity 

pattern. Thus, the model illustrates the adaptive 

significance of energy minimization. It was shown by 

electrophysiological measures that the minimal delay 

for image processing in the brain cortex is 40-60 ms 

(Bacon-Macé et al., 2005). According to the model 

presented here, this time should correspond to the 

choice of the closest pattern of integrative activity 

among those in the fluctuations and to the attempts to 

modify it. The video, which demonstrates the model 

can be accessed in Supplementary materials; the 

description is provided in Figure 2.  

The highest rate of fluctuations can be maintained by 

electrical synapses, which are ubiquitous in the brain 

cortex and they are closely coupled with chemical 

synapses often in the same synaptic cleft (see (Pereda, 

2014) for review). Fluctuations may partly be 

maintained by the bidirectional conductivity in 

electrical synapses. Along with synaptic 

transmission, another potentially important factor 

which can influence rapid activity fluctuations is 

ephaptic coupling (Anastassiou et al., 2011). 

Activity-dependent plasticity of electrical 

transmission has been shown to rely on interactions 

of electric synapses with nearby chemical synapses 

via activation of glutamate NMDA receptors (see 

(Haas et al., 2016) for review). In accordance with 

this, we  suggested on the example of mismatch 

negativity that repetitive presentation of the same 

stimulus may cause NMDA-related long-term 

plasticity in the specialized network resulting in the 

decrease of energy needed to recognize this stimulus 

(Strelnikov, 2007).  

In the case of the lack of sensory input, as in profound 

deafness, one can expect the diminished predictive 

activity in the sensory cortex. If afterwards the 

auditory input is restored (by cochlear implants), one 

can expect the reactivation of predictive coding in the 

auditory areas. We showed with PET the reactivation 

of the auditory areas in experienced cochlear implant 

users during the resting state (Strelnikov et al., 2010). 

This resting state activity corresponds to the increase 

in their auditory performance and thus reflects the 

decrease in prediction error. We believe that our 

resting-state study of the restored sensory loss 

demonstrates a direct link between the free-energy 

minimization understood as predictive error 

reduction and metabolic activity. 
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The influence of predictive coding on perception was 

confirmed in our other study, in which we 

demonstrated that the EEG response to the auditory 

“deviance” can be triggered by the corresponding 

visual cues in the absence of the actual auditory 

deviance (Strelnikov et al., 2013). In this study, using 

an oddball paradigm we presented video clips with 

even (without emphasis) phrases as the frequent 

stimuli and with one word visually emphasized by the 

speaker as the nonfrequent stimuli. In spite of the 

same sound across standards and deviants, we 

detected a significant negativity after the start of the 

emphasizing facial movements. This negativity was 

confirmed by the statistical comparisons of the 

audiovisual and the visual (silent video) stimulations. 

Thus, in the appropriate context, the visual modality 

activates predictive coding for the auditory 

stimulation. Besides, behaviourally, all the subjects 

reported the auditory emphasis, which was actually 

absent in the auditory stimulation. This illusion was 

based on the visual prediction, which was not rejected 

by the brain during the auditory stimulation even 

though the real auditory stimulation remained 

unchanged. On the basis of our model, one can say 

that visual stimulation activated the corresponding 

pattern within the fluctuations of the auditory activity. 

3.2 Internal representations of physical 

laws 

In this article, we have a tacit hypothesis that the field 

of brain energy is characterized in terms of space and 

time. We suggested that temporally changing spatial 

relations between points in the brain energy field can 

code perceived objects and showed by neural 

modelling that spatially integrative coding may 

correspond to such representations (Strelnikov, 2014; 

Strelnikov & Barone, 2012). There is a long-standing 

physical and philosophical debate whether space and 

time are real entities or products of our mind. This 

debate is also complicated by the impossibility to 

define such basic concepts in terms of any other less 

basic concepts. Given no solid proofs to claim the 

physical reality of space and time, one can stick to the 

undoubted notion that they exist in our 

representations of the world and are intuitively clear 

from the subjective experience. 

With this approach, it is clear that either space and 

time perception or face perception are inevitably 

engrained in the physical laws of our body. These 

laws seem subjective when perceived from the 

interoceptive point of view. However, they reflect the 

same physical laws as in the rest of the universe. Our 

internal state has the same objectivity as any other 

event in nature and it needs to be studied to discover 

the physical laws behind it. Even if we imagine a 

fantastic object, this imagination is just another 

phenomenon of nature resulting from objective 

physical laws in the brain. This concerns any 

observation in nature, including our thoughts and 

internal representations. We believe that the physical 

approach, which objectivizes brain events, is 
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important especially in light of the brain energy field 

consideration. 

If we say that the laws of energy transformation in our 

brain create internal representations, there is an 

inevitable question how these representations (e.g., 

mental images) are observed in our mind. The 

observing mechanism may be in some structures of 

the brain or in electromagnetic fields or in some other 

physical phenomena. Such a question corresponds to 

the question on the mechanism of consciousness and 

is outside the scope of this article. It seems rather 

probable that consciousness is a phenomenon related 

to electromagnetic fields, though there are 

considerable differences between the theories based 

on this assumption (see (Jones, 2013) for review). 

3.3 Energy field and generalized forces 

The average level of energy in a point of our model 

indicates the level of interaction or the potential for 

the interaction between different structures in this 

point (which is in reality not a point but a small 

volume like a voxel). If in one point interactions are 

higher than in the adjacent one, one can expect a force 

pushing in the direction from the point with a higher 

level of interactions to the point of the weaker level 

of interactions. This can be intuitively understood by 

the picture of air moving from spatial points with high 

pressure to points with lower pressure. 

The direction of the highest spatial increase in the 

vicinity of a point and the value of this increase are 

mathematically described by the gradient vector. 

Thus, at each moment of time one can predict the 

direction and magnitude of the force in each point on 

the basis of the known energy field. Using this 

transformation, one can obtain a vector of force in 

each point from the energy field where we have the 

level of energy in each point. This transformation is a 

common practice in physics; for example, the force of 

the electric field per point is obtained by calculating 

the gradient of the potential energy (the electric 

potential). Thus, the representation of the brain 

activity as energy field can be transformed to the field 

of generalized forces with a vector per point or per 

voxel. Evidently, these forces participate in 

establishing activity propagation in the brain and the 

above-discussed energy flows at each moment of 

time.  

However, such a consideration would be true only for 

the instantaneous representations of brain energy 

fields because with time and in the absence of energy 

input to the system gradients tend to disappear. For 

instance, gradients of temperature between different 

points of the air in a room disappear with time in the 

absence of heaters. If we observe stable gradients in 

time-averaged brain images, it indicates that there are 

some forces which maintain the gradients (see 

(Strelnikov and Barone, 2012) for a more detailed 

discussion). 

Once we know the spatial distribution of generalized 

forces at rest and during stimulation, we can deduce 
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another property – a sensory transforming field, 

which in each voxel transforms the direction and 

magnitude of force vectors. We have demonstrated 

that sensory input can be represented as a tensor field 

which transforms brain activity (Strelnikov, 2013). 

The peculiarity of this point of view is that it 

considers the influence of sensory input not per voxel 

but as acting on the differences between the adjacent 

voxels. Moreover, the transforming nature of sensory 

input can be observed at any level starting from 

sensory receptors’ molecules, which change their 

shape so that interaction between their parts changes. 

The minimization of work and free energy are 

reflected in the transforming tensor field. 

Minimization of transformation from this point of 

view means trying to preserve the spatial structure of 

activity (i.e., the structure of the energy field) existing 

in the resting state. 

3.4 Limitations and perspectives 

The proposed model is based on the coupling between 

information increase and energy increase; this is a 

solid physical principle, which cannot be 

reconsidered by any future development of 

neuroscience. The limitations of the model, which 

also constitute perspectives for its development, are 

mostly related to its spatial organization. Though the 

activity patterns present a regular two-dimensional 

shape, which is easily decoded by spatial 

differentiation, the neural model behind consists of 

two neural populations with several layers each. 

Intuitively, elements with similar functions should be 

rather close in space. The most effective is the 

network with the smallest size: two times increase of 

the size can cause even three times decrease of the 

information-energetic efficiency (Paprocki and 

Szczepanski, 2013). However, other factors can 

influence, for example, parts of the visual systems are 

separated by rather long distances. Thus, the link 

between the spatial organization of neural structures 

and the resulting energy field is not straightforward 

and requires further exploration. 

Besides, energy fields can exist at different levels of 

processing. The holistic perception of a face, for 

example, which distinguishes it from other objects, 

may precede the featural exploration (see 

(Nakabayashi and Liu, 2014) for review). In our 

model, the mathematically simple integration method 

is chosen, which corresponds to the rows and columns 

of the flat two-dimensional input. In a real situation, 

the input has complex non-rectangular shapes and the 

integration mechanism can follow other strategies. 

The integration can start not in the corner but from the 

most meaningful parts of the image, like eyes and 

mouth for the face. The biological ways of 

information integration coupled with energy increase 

constitute a direction for further neuroenergetic 

research. 

Moreover, as often happens in physics, insights 

obtained from the reformulation of a problem in terms 

of energy and energy transformations can advance 
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our understanding of situations where energy does not 

figure as a variable of interest. In particular, reasoning 

in terms of energy can render the description of a 

process simpler. By analogy, to study air flows in a 

room, one can start measuring the trajectory of each 

molecule of the air, and this is a completely 

reasonable approach. However, it is much simpler to 

obtain values of temperature (reflecting average 

kinetic energy of molecules) in different points of the 

room to determine air flows. As discussed above, an 

energy-based understanding of feedback provides a 

simple explanation compared to any other attempt to 

understand the necessity of this mechanism. Energy-

based descriptions of activity patterns are also much 

simpler than those based on the rates of spikes, for 

instance. As any kind of brain mechanism can be 

reformulated in energy terms, the energy field 

approach potentially represents a link between 

different approaches to brain function starting from 

molecular up to cognitive levels. 

 

4. Conclusions 

The energy field approach does not contradict 

any other approach in neuroscience but presents 

a general and abstract way to deal with different 

levels of brain functioning. Elements of the 

energy field can represent voxels as in 

neuroimaging, particular neuroglial populations, 

neurons and even molecular structures. The 

advantage of the energy field approach is that 

energy characterizes any type of interaction at 

any chosen level. Depending on particular needs, 

the values per element of energy fields can be 

free energy, electromagnetic energy, heat etc. 

This opens the possibility of comparing different 

types of interactions by comparing energy fields 

with different types of energy per element of the 

field. Recalculating any neural model in terms of 

energy levels, one obtains a tool to link this 

model to the molecular machinery of the brain 

(glucose, ATP, ATPases, oxygen etc.). Ideally, if 

one knows an energy level per point in the brain, 

one knows sufficiently enough to predict brain 

function. 
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