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Recent research has demonstrated that humans are able to implicitly encode and

retain repeating patterns in meaningless auditory noise. Our study aimed at testing

the robustness of long-term implicit recognition memory for these learned patterns.

Participants performed a cyclic/non-cyclic discrimination task, during which they were

presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical)

or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs

were implicitly presented multiple times within a block, and implicit recognition of these

target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination

task. Furthermore, robustness of implicit recognition memory was tested by presenting

participants with looped (shifting the origin) and scrambled (chopping sounds into

10− and 20-ms bits before shuffling) versions of the target CNs. We found that

participants had robust implicit recognition memory for learned noise patterns after

4 weeks, right from the first presentation. Additionally, this memory was remarkably

resistant to acoustic transformations, such as looping and scrambling of the sounds.

Finally, implicit recognition of sounds was dependent on participant’s discrimination

performance during learning. Our findings suggest that meaningless temporal features

as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover,

successful encoding and storage of such fine features may vary between participants,

possibly depending on individual attention and auditory discrimination abilities.

Significance Statement

• Meaningless auditory patterns could be implicitly encoded and stored in long-term

memory.

• Acoustic transformations of learned meaningless patterns could be implicitly

recognized after 4 weeks.

• Implicit long-term memories can be formed for meaningless auditory features as short

as 10 ms.

• Successful encoding and long-term implicit recognition of meaningless patterns may

strongly depend on individual attention and auditory discrimination abilities.
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INTRODUCTION

Despite decades of research on the mechanisms of memory in
humans, several questions regarding the spatial and temporal
correlates of sensory memory remain unanswered. Sensory
memory for meaningless stimuli is particularly interesting to
study since memory for these stimuli in their smallest perceived
units form the building blocks of sensory recognition. Further,
understanding how meaningless perceptual stimuli are encoded
and stored provides a template for all forms of perceptual
learning during infancy. Meaningless stimuli are also interesting
to use since participants cannot consciously rehearse individual
exemplars and cannot hear them out of the experimental
context. Evidence for our ability to detect statistical regularities
in meaningless information comes from a classic study in
which participants were presented with segments of auditory
white noise played back to back continuously and were able
to detect the recurrence of some “features” (Guttman and
Julesz, 1963). Participants are also highly consistent when
they tap along with the frequency of auditory noise cycling
(Kaernbach, 1992), implying that they can retain meaningless
information in working memory. More surprisingly, our ability
to store meaningless information in long-term memory was
demonstrated recently (Agus et al., 2010). Using an implicit
learning paradigm, they had participants listen to Gaussian
white noises while performing a cyclic/non-cyclic discrimination
task. Unknown to participants, some of the cyclic sounds were
presented multiple times, while others were only presented
once. Participants improved at detecting cyclicity in some of
the sounds presented to them multiple times and retained
this knowledge after 2–3 weeks. This suggests that detection
of cyclicity may have been facilitated when sounds were
previously learned, i.e., improvement in the discrimination
task may reflect implicit recognition of learned sound features.
Moreover in the same study (Agus et al., 2010), participants
listened to several exemplars of noise—which were essentially
distractors—in between presentations of target noises. This
suggests that memory for noise was resistant to interference
effects. Interference arises from both similar noise distractors
within the learning context, as well as all from environmental
sounds heard during the retention period. In light of these
findings, we were interested in exploring the limits and
robustness of this sort of long-term memory for meaningless
sounds.

A first question of interest is to determine what temporal
and/or spectral features in noise are stored. Interestingly, when
learned cyclic noises were played backwards during a retention
test (Agus et al., 2010), detection of cyclicity was more accurate
for reversed versions of learned sounds than for novel cyclic
sounds, suggesting that acoustic features which are (implicitly)
encoded are preserved in the reversed version of the sound.
Here we further investigated how implicit memory performance
varied with other acoustic transformations applied to the learned
stimulus.

We also investigated the link between strength of meaningless
stimuli encoding and subsequent memory performance. Turk-
Brown et al. reported that brain regions such as the PPA

(Parahippocampal place area, involved in scene memory)
show higher activity during the encoding (first exposure)
of scenes that were subsequently recalled vs. scenes that
were forgotten (Turk-Browne et al., 2006) in both implicit
and explicit paradigms. Performance in implicit encoding
of meaningless sounds typically shows high inter-individual
variability (Agus et al., 2010), and we were interested in exploring
the relationship between strength of encoding and subsequent
implicit recognition of these stimuli.

Putting these findings together, we hypothesized the
following:

(1) Long term, implicit memory for auditory noise (demonstrated
as a preferential bias to detect cyclic features in learned vs.
novel sounds) would be resistant to acoustic transformation,
declining with increasing degree of transformation from the
original learned noise.

(2) This resistance to transformation would depend on how
strongly the stimuli were encoded.

These claims were tested using an implicit encoding and
subsequent long-term implicit recognition paradigm, as
previously described (Agus et al., 2010). To test the first
hypothesis, in addition to the old (learned) and novel sounds
used in traditional memory retention tests, participants were
presented with modified versions of the learned sounds. In some
trials, the temporal origin of a learned sound was randomly
shifted, changing the temporal expectancy of the learned
feature(s) but preserving acoustic properties and surrounding
context. In other trials, learned sounds were randomly shuffled
to disrupt both temporal expectancy and surrounding context
of learned features. To test the second hypothesis, implicit
recognition performance on modified versions of learned
sounds was considered in relation to learning performance.
We predicted that implicit recognition during the retention
test would vary as a function of acoustic transformation from
the original learned sound. We also predicted that implicit
long-term recognition would be higher in participants showing
better performance during the learning session.

MATERIALS AND METHODS

These hypotheses were investigated in one experiment with 2
versions. Participants were randomly assigned to one of the two
versions of the experiment, which only differed in small aspects,
as described in the procedure.

Participants
A total of 37 participants between 20 and 30 years of age,
with self-reported normal hearing, were screened for the
experiment. Twenty-five of these participants (mean age= 24.32
years, SD= 3.07) were finally included. All participants were
compensated for their time with gift cards pre-loaded with
monetary values proportional to the extent of their participation,
ranging from 10 euros (only screening) to 40 euros (completing
both sessions of the experiment). They were instructed that the
purpose of the experiment was to assess auditory discrimination
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and were naïve to the actual hypotheses of the experiment. All
participants gave written informed consent in accordance to the
declaration of Helsinki and the University of Toulouse and CNRS
requirements for research with human participants [Protocol:
CPP14-007a/2013-A01450-45].

Stimuli
Stimuli were programmed and generated using MATLAB
R2013 (http://www.mathworks.com/). The sound stimuli were
sequences of normally-distributed, 16-bit pseudo-random
numbers with a zero mean, which were played at a sampling
frequency of 44.1 KHz. To ensure that the sounds are different
every time, we reset the seed of the pseudorandom number
generator of MATLAB on every trial. We constructed Cyclic
(CN) and Non-Cyclic (N) stimuli, both lasting 1 s in duration
(Audio samples can be found at http://m4.ups-tlse.fr/; See
Supplementary Material for Audios 1 and 2 which are exemplar
CN and N, respectively). A CN was generated as a 500-ms
pseudo-random segment of sound that was presented twice
back to back (cycled). An N was generated as a 1000-ms
pseudo-random segment. The spectrograms of such Gaussian
white noises are flat, with no distinctive variations in frequency
over time. Therefore, to illustrate the cyclic nature of these
sounds, we plotted the actual amplitude variations over time
(Figure 1A). This shows that the amplitude variations in the first
and second halves are identical in a CN but not in an N. Over the
experiment, participants were presented with 4 variations of the
CNs (explained below) while all the Ns were uniquely generated
and heard only once. The generation and exemplar amplitude
variations in modified CNs are illustrated in Figures 1B,C.

Target CN
This was a uniquely generated CN that was presented several
times to the participant over the learning and testing sessions of
the experiment.

CN
This was a uniquely generated CN that was heard only once
throughout the experiment.

Looped Target CN
This was a modified version of a target CN. For looping a target
CN, a random time point was chosen from its first half, the
sequence was cut at this point and the preceding segment was
pasted at the end.

Scrambled Target CN
A modified version of a target CN was created by segmenting
the first half (500 ms) into several bins of equal size, which were
randomly shuffled and then played back to back to create a CN.

It is important to note that each presentation of a looped or
scrambled CN was different to prevent learning of one exemplar
of the looped/scrambled version of the target CN throughout
the session. Looped and scrambled CNs were presented to the
participants only during the testing session.

To further understand how scrambling and looping affect the
acoustic properties of a CN, we calculated Fourier transforms of
an exemplar CN and its variants. Variants were created similar to

the looped and scrambled sounds. Bin sizes of 250, 100, 50, 20,
and 10 ms were used to create 5 distinct scrambled versions of
the exemplar CN. The difference in amplitude between spectra
of these variants and spectrum of the original CN is plotted
in Figure 2, with frequency bins (10 samples/bin) ranging from
lower bands to higher bands on the X axis. While looping and
250-ms scrambling does not change the amplitude spectrum at
any frequency, scrambling using 100-ms or smaller bins affects
the amplitude spectrum at all frequencies.

Task
All participants performed 2 sessions of a forced-choice
discrimination task, 4 weeks apart. Each trial started with
participants hearing a Gaussian noise of 1 s, after which they
had to discriminate the sound as cyclic/non-cyclic. Participants
did not receive any feedback about their performance. All trials
were presented in a randomized order. After session 1, each
participant’s performance was analyzed (as explained in the
analysis section) and learned target CNs were selected for the
session 2. Participants on average took about an hour to complete
each experimental session, not including training. The training
session took on average 15 min. We provided participants with
scheduled breaks between blocks and participants were informed
that they could also pause within a block to take breaks as
necessary.

Procedure
Both experimental sessions included 10 blocks of 80 trials each.
The first session included a training part followed by an implicit
learning part. The second session was the testing part.

Each participant was assigned to perform one of 2 versions of
the study. Differences between both versions are explained below.

Session 1: Training
Before starting the learning part of the experiment, all
participants underwent a training session, during which they
listened to CNs and Ns of varying durations. This training was
intended to habituate participants to detect cyclic patterns in
random noise. Each training stage was repeated with new sounds
until participant reached performance criterion. To explain the
difference between cyclic and non-cyclic sounds, participants first
listened to samples of 5-s cyclic sounds constructed as 10 repeats
of a 500ms random noise segment and 5 s non-cyclic random
noise sounds until they could confidently differentiate between
the two types of sounds verbally. Participants started the training
phase by listening to 5 CNs (5 s, 10 repeats of 500ms segment)
and 5 Ns (5 s), in random order (training stage 1). After each
sound was presented, participants had to indicate via a keyboard
button press if the sound was cyclic or not. They were then
given feedback about their response. Once they had correctly
identified all CNs they moved to the stage 2, during which they
were presented with 20 CNs (2 s, 4 repeats of a 500ms segment)
and 20 Ns (2 s). Once participants achieved a global accuracy of
80% of correct responses for the CNs they moved to the stage
3 and were presented with 20 CNs (1.5 s, 3 repeats of a 500 ms
segment) and 20 Ns (1.5 s) until they achieved a global accuracy
of 70% of the CNs. At any stage of the training, participants who
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FIGURE 1 | Exemplars of 1-s Gaussian white noises (sampling frequency = 44.1 kHz) and acoustic transformations used in the experiment. (A) Cyclic

noise (CN) vs. non-cyclic noise (N): Gaussian noises typically show small amplitude variations over time. The first and second halves of a CN are identical, while an N is

completely random. (B) Transformations used to loop and scramble the learned CNs in the testing session. For looping, a random time point was chosen in the first

half of the sound and the sound portion preceding this time point was shifted to the end. For scrambling, the first half of the cyclic sound was cut into segments of 20

ms for version 1 and 10 ms for version 2, the segments were randomly shuffled and the resulting 500-ms sound was played back to back to create a scrambled CN.

(C) Looped and Scrambled sounds: amplitude variations over time of exemplar looped and scrambled (20 ms) versions of the CN shown in (A). The color scheme of

(A,C) is graded as a function of sound amplitudes, in order to facilitate identification of repeating features.

did not reach criterion ended their participation in the study. The
training was identical for both versions of the experiment.

Session 1: Learning
Participants performed 10 blocks of the forced-choice
discrimination task (as described earlier) immediately after
training. In each block, participants were presented with 40 Ns,
20 CNs, and 20 repeats of a unique target CN.

Version 1

Each participant was randomly assigned to 1 of 2 possible sets
of 10 target CNs. This was aimed at testing the existence of

any systematic biases to detect cyclicity in some target CNs over
others.

Version 2

All participants heard the same set of 10 target CNs (set 2 of
version 1).

Session 2: Testing
As far as the participant was concerned, this session consisted
in an identical forced-choice discrimination task, similar to the
one performed in the learning session. However, the stimuli
used were different: for each participant we created a list of
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FIGURE 2 | Changes in frequency features—in low, mid and high frequency bands—of a CN due to looping and scrambling with increasing bin sizes.

The maximal frequency on the X axis corresponds to the Nyquist frequency (22,050 Hz) and the spectrum amplitude difference between original and

looped/scrambled versions of a CN is plotted on the Y axis. With decreasing bin size, the difference between the resulting scrambled sound and the original sound

increases, leading to greater difference in amplitude spectrum from the original, across all the frequency bands.

the “learned” target CNs (discrimination performance of at least
80%, i.e., a sound which participants correctly discriminated as
cyclic at least 16 out of the 20 times they heard it), which was
further used to create looped and scrambled CNs. In addition
to Ns, CNs, and Target CNs, participants were presented with
looped CNs during 5 blocks and with scrambled CNs during
the other 5 blocks (block order was randomized). Each block
included 40 Ns, 10 CNs, 10 target CNs (chosen randomly on each
trial from a list of learned target CNs for each participant) and
20modified (looped/scrambled) target CNs. The scrambled sounds
that participants heard were different based on the version they
had been assigned to, as explained below.

Version 1

Participants assigned to version 1 of the experiment were
presented with learned target CNs scrambled using 20-ms time
bins. That is, the first half of a learned target CN was cut into 25
bins of 20 ms (882 samples in each bin) before shuffling to create
a scrambled target CN.

Version 2

Participants assigned to version 2 of the experiment were
presented with learned target CNs scrambled into 10-ms time
bins. That is, the first half of a learned target CN was cut into 50
bins of 10 ms (441 samples in each bin) before shuffling to create
a scrambled target CN.

Finally, we were interested in analyzing how two parameters—
sleep and sound imagery—might influence learning and memory

in our paradigm. Numerous studies have shown the influence
of quality of sleep (review, Walker and Stickgold, 2014) in
learning and memory for different types of stimuli. To assess
quality of sleep, participants maintained a sleep diary, similar
to those used previously (Mary et al., 2013), during the 4 weeks
between learning and testing sessions. During the testing session,
Participants also filled out St. Mary’s sleep questionnaire (Ellis
et al., 1981) regarding their last night’s sleep quality. Lastly, to
assess the influence of sound imagery on the ability to do the
discrimination task, participants also filled out a sound imagery
questionnaire (Willander and Baraldi, 2010).

Analysis
Analysis was done using MATLAB and statistical tests were
performed using JMP (Version 12. SAS Institute Inc., Cary, NC,
1989-2007).

Learning Session Analysis
The proportion of hits and false alarms in each block was
calculated, for all participants. The correct identification of a CN
(CNs and target CNs) was considered a hit and the incorrect
identification of an N as a cyclic noise was considered a false
alarm. All target CNs that were correctly identified in at least 80%
of the trials were considered learned target CNs.The list of learned
target CNs was subsequently used to create the testing session
stimuli for each participant.

Moreover, we investigated any systematic biases in detecting
cyclicity in some target CNs over others. For each target CN
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presented in the learning session, the proportion of participants
who actually learned the sound was determined. This was done
for each set of target CNs over the two versions of the experiment.

Individual discrimination performance was computed over
the 10 blocks, using the principles of signal detection theory.
We calculated individual a’, a non-parametric measure of
participants’ sensitivity to differences between signal (target) and
noise (distractor), i.e., cyclic vs. non-cyclic stimuli (Pollack and
Norman, 1964; Stanislaw and Todorov, 1999).While sensitivity is
traditionally evaluated using d’, an assumption for using d’ is that
signal and noise distributions have equal standard deviations. In
our experiment, since the signal trials include different subtypes
of trials (CNs or target CNs) but not the noise trials (Ns), a’ is a
better estimate for sensitivity than d’. A’ was calculated using the
formula provided by Stanislaw and Todorov:

A′ = 0.5 +

[

sign(H− F)(H− F)2 +
|H− F|

4 ∗max(H, F)− 4 ∗HF

]

(1)

Sign(H− F) = + 1 if (H− F) > 0 and − 1 if (H− F) < 0

Where H = proportion of Hits for the signal trials and F =

proportion of False Alarms for distractor trials.
Any participant with a’ < 0.5 was excluded from the analysis

(and from subsequent participation in the testing session) since
this implied that this participant’s performance was at chance
level.

Testing Session Analysis
The proportion of hits (correct identification of learned target,
looped, scrambled, and novel CNs as cyclic) and false alarms
(incorrect identification of Ns as cyclic) was calculated for each
individual. The discrimination rate for CNs was determined
individually as the number of times (out of 20 presentations
within a block) a CN was correctly discriminated.

To differentiate between participants who weremerely good at
detecting noise cyclicity from those demonstrating a preferential
bias toward previously learned cyclic sounds, i.e., an implicit
memory effect, we compared discrimination rates for learned
target and novel CN trials in each individual. A participant who
had truly learned a target CN would more accurately detect
cyclicity for this noise over a novel CN. To ensure that any
observed preferential bias to discriminate learned target CNs was
not due to within-session rapid learning, the discrimination rate
for learned target CNs was also analyzed as a function of time.

Moreover, to investigate the relationship between how well
a sound was learned, quantified as discrimination performance
in the learning session, and subsequent memory resistance
to acoustic transformations, we compared a’ during learning
(a’learning) with discrimination rate for intact learned, looped, and
scrambled target CNs in the testing session. A high a’learning would
mean participants accurately detect cyclicity during the learning
session.

Lastly, scores from the questionnaires on sleep quality and
sound imagery were correlated with a’ values across our group
of participants.

RESULTS

Based on individual performances in the training and learning
session [inclusion criteria: a’ > 0.5], data from 16 (of 26)
participants in version 1 and data from 9 (of 11) participants in
version 2 were included in the analyses. Since the learning session
followed an identical procedure and resulted in equivalent
discrimination sensitivity (a’ learning) in both versions [F(1, 25) =
0.4287, p= 0.52], data from the first session for all 25 participants
were pooled. Data from the training session for both versions
is summarized in Supplementary Figure 1. Individual a’ values
ranged between 0.53 and 0.97 (mean a’ = 0.73, SD = 0.71). The
number of sounds learned by participants within each set of
target CNs was computed, showing no preferential bias for some
sounds over others in set 1 [F(9, 80) = 0.26, p = 0.98] and set 2
[F(9, 170) = 1.09, p = 0.37] (Figure 3). Moreover, the proportion
of participants who learned the target CNs did not differ between
both sets [F(9, 20) = 0.24, p= 0.98] (Figure 3).

Participants performed the testing session a month after the
learning session (mean interval 30.96 ± 4.2 days, range 23–41
days). In the testing session, discrimination sensitivity (a’ testing)
again did not vary between versions 1 and 2 of the experiment
[F(1, 25) = 0.0057, p= 0.94] and therefore these data were pooled
(n = 25). Detection of cyclicity in novel CNs did not change
across the two sessions [Mean difference = 0.58, SE = 3.8, t(25)
= 0.15, p = 0.8803] indicating that participants’ performance
in the task was similar over the 4 weeks. Furthermore, the
number of times a participant performed each training stage
during the learning session had no effect on the discrimination
performance during the testing session (a’ testing): training
stage 1 [F(1, 25) = 0.09, p = 0.75], training stage 2 [F(1, 25)
= 1.98, p = 0.17] and training stage 3 [F(1, 25) = 0.03,
p= 0.86]. Within the testing session, discrimination rates were

FIGURE 3 | Learning session results for both sets of 10 target CNs:

Each target CN was learned by a variable percentage of participants,

i.e., there were no target CNs that were systematically learned by all

participants.
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significantly higher for learned target CNs compared to novel
CNs [F(1, 25) = 7.03, p < 0.014] (Figure 4A). This suggests
that participants had memory for the CNs previously learned
in the first session. Furthermore, to ensure that this higher
discrimination rate for learned target CNs did not result from
learning of features throughout the testing session (as opposed
to long-term memory for features from the first session), the
evolution of discrimination rates for learned vs. new CNs was
analyzed over time. A two-way repeated-measures ANOVA
on discrimination rates was computed, testing main effects
and interaction of within-subjects factors “trial type” (2 levels,
“learned target CN” and “novel CN”) and “block” (10 levels).
Trial type was the only significant predictor of performance
[F(1, 200) = 313.696, p < 0.0001] irrespective of block [F(9, 200)
= 1.57, p = 0.127]. The effect of trial type was equivalent
across blocks [F(9, 200) = 1.06, p = 0.394]. These results were
confirmed by the absence of correlation between hit rate for
learned and novel CNs over the 10 blocks [F(1, 100) = 0.14, p =

0.71; R2 = 0.001, slope=−0.03, intercept= 0.7, p= 0.71]. These
results are shown in Figure 4B. Progression of the other trial
types, i.e. looped and scrambled learned CNs, are summarized
in Supplementary Figure 2.

Since participants had long-term memory for learned target
CNs, we further analyzed discrimination rates for all types of
CNs in the testing session. Since scrambled target CNs were
different in versions 1 and 2 of the experiment, the effect of
version on discrimination rates was specifically tested. A two-
way ANOVA was conducted, using within-subjects factor of
“trial type” (4 levels, “intact target CN,” “looped target CN,”
“scrambled target CN,” and “novel CN”) and between-subjects
factor of “version” (2 levels). A significant effect of trial type on
discrimination rates was found [F(3, 100) = 23.73, p < 0.0001].
There was no effect of version on discrimination rates [F(1, 100)
= 2.29, p = 0.1432], and no interaction between both factors
[F(3, 100) = 0.99, p = 0.4]. Since there was no evidence for

any effect of version or interaction, data were pooled across
both versions (Figure 5A) and differences between trial types
were further examined. Tukey’s Honestly Significant Difference
(Tukey’s HSD) tests showed that discrimination rates for novel
CNs were lower than discrimination rates for all other CNs;
that is, detection in intact target [effect size (mean(i)-mean(j))
= 24.6, CI95% = (16.5, 32.7), p = 0.0001], looped [effect size =
19.23, CI95% = (11.1, 27.3), p = 0.0032] and scrambled [effect
size = 15.67, CI95% = (7.6, 23.7), p = 0.0362] CNs were all
significantly higher than novel CNs. Discrimination rates for
intact target and looped trials were equivalent [p = 0.8004],
and so were the discrimination rates for looped and scrambled
trials [p = 0.8464]. However, discrimination rates for learned
intact trials were higher than for scrambled trials [effect size
= 8.93, SE = 3.07, p = 0.3164]. We were also interested in
any performance difference for the scrambled trials between
versions 1 and 2, since the bin sizes were different in the two
versions. As shown from the two-way ANOVA, discrimination
rates were not impacted by the version of the experiment,
indicating that scrambling learned CNs with bin sizes of 10 or
20ms resulted in equivalent performance. For information, we
report in Figure 5B results for scrambled CNs, for the 2 versions
separately.

Individual discrimination performances in the testing phase
as a function of discrimination efficiencies (quantified as a’)
during the learning phase for learned CNs and modified forms
of the learned CNs were examined. Linear regression between
hit rate(testing) and a’(learning) showed that a’ during learning did

predict later detection of cyclicity in looped [R2 = 0.272, slope
= 81.95, intercept = 5.71, p = 0.0075] and scrambled CNs [R2

= 0.366, slope = 102.59, intercept = −13.73, p = 0.0013]. The
correlation between a’ during learning and discrimination rate for
intact learned CNs [R2 = 0.153, slope= 60.36, intercept= 26.32,
p = 0.053] was just below significance. These results show that a’
during learning was a significant predictor of further accuracy to

FIGURE 4 | Discrimination performance for intact learned target CNs vs. novel CNs in the testing session. (A) Relationship between discrimination rates of

learned target and novel CNs in each participant. Participants above the diagonal show higher rates for learned vs. novel CNs, suggesting that memory facilitated the

discrimination task. (B) Discrimination rates of learned target and novel CNs over time (10 blocks).
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FIGURE 5 | Discrimination performance during the testing session. (A) Performance for intact, looped, scrambled learned target CNs and novel CNs (n = 25)

and (B) Discrimination performance for scrambled trials with 20 and 10 ms bin sizes (n = 16 in version 1 and n = 9 in version 2).

FIGURE 6 | Relationship between discrimination rates of CNs in the

testing session and learning efficiency (represented as a’) for all

participants (n = 25).

discriminate modified versions of learned CNs 4 weeks later. This
is shown in Figure 6.

Lastly, the relationship between discrimination performance
in the learning and testing sessions and parameters quantified
using sleep and sound imagery questionnaires was investigated.
The results are summarized in Supplementary Figure 3. There
was no correlation between discrimination ability in the testing
phase and self-reported sleep quantity [R2 = 0.02, slope= 0.007,
intercept = 0.7, p = 0.55] or quality of sleep [R2 = 0.004,
slope=−0.002, intercept = 0.79, p = 0.76] the night before
testing. There was no correlation between discrimination rates
and alertness the day of testing [R2 = 0.05, slope= 0.02, intercept
= 0.69, p= 0.29]. We also found no link between sound imagery
scores, as assessed by St Mary’s questionnaire, and discrimination
in the learning [R2 = 0.07, slope = −0.03, intercept = 0.85,
p= 0.32] and testing [R2 = 0.09, slope=−0.04, intercept= 0.89,
p= 0.23] sessions.

DISCUSSION

The present results confirm our hypothesis that features in
meaningless sounds can be learned and retained over several
weeks. The results also demonstrate the robustness of this
memory to acoustic transformations: despite a decrease in the
preferential bias to detect learned features with increasing degree
of transformation from the original, participants were more
accurate to detect cyclicity in highly degraded versions of learned
sounds in comparison to novel cyclic sounds. The quality of
learning was a predictor of this memory to survive acoustic
transformation. While models of sleep and memory predict that
stored features are subject to opposing factors that selectively
strengthen (reactivations during sleep) (Rudoy et al., 2009)
and weaken (internal pruning based on probability estimations
of re-occurrence) (Kim et al., 2014) the memory trace, sleep
parameters quantified by self-report measures did not correlate
with discrimination performance; more objective measures of
sleep are necessary to understand the role of sleep in memory for
Gaussian sounds.

Regarding robustness of memory to acoustic transformations,
we found that participants had equivalent implicit recognition
memory for intact and looped (onset-shifted) versions of a
learned sound, clearly demonstrating that feature learning was
not restricted to sound onset. Instead, learned acoustic features
that facilitate implicit recognition may be scattered throughout
the sound. We also surprisingly observed long-term implicit
recognition of scrambled versions of learned sounds, where
only small bin sizes of 10 and 20 ms were preserved and
temporal context of learned features was lost. Although the limit
of memory capacity has been discussed since Miller proposed
the concept (Miller, 1956), few studies have investigated the
capacity limits of implicitly-encoded purely sensory memory.
The upper capacity limit in working memory for Gaussian
noises was found to be around 100 ms for individual spectro-
temporal features, while the lower resolution limit was unclear
(Kaernbach, 1993, 2004). Our results demonstrate that this
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lower resolution limit could be as short as 10 or 20 ms.
Since each presentation of a scrambled sound was randomly
generated, new features greater than 10 ms in length could
not be learned throughout testing. As shown in our analysis,
scrambling modifies the spectral features of original sounds
as a function of bin size, with these modifications staying
nearly uniform across higher and lower frequency bands. This
observation renders the coding of sound frequency features an
unlikely mechanism to explain long-term implicit recognition.
An alternative explanation would be that participants were able
to store temporal features shorter than 10 ms. Interestingly,
participants who accurately discriminated cyclic and non-cyclic
sounds during the learning session also had higher implicit
recognition memory for looped and scrambled versions of
learned CNs, suggesting that the size of a stored feature
is inversely proportional to encoding efficiency. Our data
also demonstrate that these learned features vary between
participants, and that no single feature could be learned by all
participants. The phenomenon of stochastic resonance, where
optimal1 noise can enhance the periodicity of a weak signal
causing the signal to rise above the threshold for detection
(Wiesenfeld and Moss, 1995), puts this finding into perspective.
This phenomenon was demonstrated in the somatosensory
system (in anesthetized cat): periodic tactile stimuli, which had
been optimally enhanced through addition of noise, evoked field
potentials (Manjarrez et al., 2003). Similarly, we speculate that
specific acoustic features (weak signal) of a Gaussian sound may
be preferentially enhanced when added with baseline neural
activity (optimal noise) for a given individual, resulting in
different features being encoded by different participants. Further
support for this hypothesized mechanism of learning features
in meaningless stimuli comes from a recent study where the
authors asked participants to perform a similar discrimination
task in an MEG scanner (Luo et al., 2013). The authors found
that the phase of auditory cortical neural responses change and
track learning of target CNs in the theta (3–8 Hz) range. They
also demonstrate that different learned target CNs induce diverse
phase pattern responses. These results suggest that as features
in target CNs are learned, phase-mediated temporal encoding
specific to the learned feature occurs in the auditory cortex.
Since white noise (which doesn’t contain acoustic features or
edges) does not reset the phase of ongoing oscillations (Luo and
Poeppel, 2012), stochastic resonance could contribute to feature
detection. These ideas raise interesting hypotheses for future
testing.

Recently, the neural correlates of memory for meaningless
sounds were investigated in a study where participants
were presented with 200- or 500-ms patterns that repeated
every 500 ms (Andrillon et al., 2015). These patterns were
embedded randomly in 8 min of continuous noise while
participants detected changes in amplitude modulations.
Fully developed evoked potentials were observed within 5
presentations of a repeating pattern suggesting that even

1The noise has to be optimal since too much noise can mask the weak signal

completely and too little noise does not lead to a correlation between the weak

signal and detection of events.

in the absence of a task the brain can learn patterns within
a few exposures. These evoked potentials (in terms of
amplitude, coherence and spectral power) correlated with
auditory discrimination performance. Consistently, our
results suggest that individual factors influencing neural
activity, such as attention, impact the encoding of acoustic
features.

Our results are not in line with traditional models of
sensory memory (for a review of experiments that led to
these models, refer to Cowan, 1988). Sensory memory, such
as memory for Gaussian noises, has been proposed to be
characterized by 4 features—(a) it forms independently of
attention, (b) it is modality specific, (c) it has fine resolution,
and (d) it has a short retention time, thereby distinguishing
it from categorical memory which is held in long term
memory. Cumulative evidence against this model of sensory
memory was discussed by Winkler and Cowan (2005) in
light of results from auditory memory reactivation studies.
Results from several studies using the mismatch negativity
paradigm suggest the existence of longer lasting memory for
acoustic regularities that are associated with “anchoring” features
of a stimulus. What these anchoring features might be, or
how these regularities might be stored are not clear and the
authors argued for a need for better models to explain sensory
memory.

As argued by Winkler and Cowan, our data suggest a need
for a better model to explain mechanisms of auditory sensory
memory. Data from our scrambling condition show that there
is long-term memory for purely sensory features. Additionally, a’
during learning influenced the robustness of implicit recognition
memory. Fluctuations in the attentional network as well as
bottom-up, feature-based attention invoked by the stimuli may
have affected participants’ accuracy to differentiate cyclic and
non-cyclic sounds during learning and memory formation,
therefore challenging the first claim. This is further supported
by individual differences in encoding a given noise feature.
The fact that participants retained their preferential bias over
several weeks also challenges the 4th claim (short retention
time). Rather, our results are more in line with predictions
from the emergent memory account (EMA) (Graham et al.,
2010). According to this model, the boundary between sensory
perception and memory is not clearly defined and memory
emerges as a result of hierarchical organization of perceptual
representations that are distributed throughout the brain. Thus,
this model predicts that sensory memories can rapidly form
as a function of attention and number of presentations. Our
results are compatible with these predictions and memory for
Gaussian noise is likely the result of detecting repeating spike
patterns. Attention modulates the sensory representations of
these features while number of presentations influences the
probability of feature detection. Themodels discussed byWinkler
and Cowan (Winkler and Cowan, 2005) and the EMA (Graham
et al., 2010) are quite different in their explanations of how
sensory memory works since the EMA model is a model of
all types of memory. Although our data challenge traditional
models of sensory memory, further experiments specifically
comparing observed (experimental data) vs. predicted (from
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models) features of memory need to be conducted to understand
the mechanisms of sensory memory in light of these varied
models of memory.

Further support for the claim that short acoustic features
are rapidly (Andrillon et al., 2015) and robustly (our results)
stored, comes from Spike time dependent plasticity (STDP)
models that demonstrate how neurons can learn repeating
spatiotemporal patterns in noise (Masquelier et al., 2008, 2009).
The model used random Poisson activity in 2000 afferents
with variable instantaneous firing rates at baseline. Continuous
spike trains were then fed to this neuron detecting spike
coincidences, and an arbitrary pattern was randomly repeated
in the input stream. The target pattern consisted of 50 ms of
spiking activity copy-pasted at random intervals in a subset
of the afferents and the neuron specialized to respond with
100% selectivity (0 false alarms) to the target pattern within
few tens of presentations, demonstrating fast unsupervised
learning. After learning of the target pattern, a small fraction
of the synapses had become selective to the pattern (383/2000
afferents) and the rest were completely silent. Interestingly, while
chance determined which part of the 50 ms target pattern
the neuron learned, the first spike was observed as early as
4 ms after target pattern onset, suggesting that really small
features of repeating patterns were detected. The Gaussian
sounds used in our study would induce firing patterns in
the auditory nerve similar to spike patterns observed in the
afferents of this model (Masquelier et al., 2008), Furthermore,
cortical neurons with firing rates of 25 Hz or lower have
been shown to function as coincidence detectors (König et al.,
1996). While Konig and colleagues studied cortical neurons,
according to STDP any low firing rate, coincidence detecting
neuron, either cortical or sub-cortical, could learn meaningless
repeating patterns. Since participants had memory for 10- and
20-ms scrambled versions of learned sounds, a few neurons that
fire at/below 25 Hz acting as coincidence detectors probably
specialized to respond to extremely short features in learned
target CNs.

To conclude, using the frozen noise paradigm in an implicit
learning protocol, we showed that participants had robust
implicit recognition memory for short temporal features of
meaningless sounds. The robustness of this memory may depend
on individual encoding strength. Further research is required
to understand the neural mechanisms underlying memory for
meaningless stimuli.
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Supplementary Figure 1 | Performance during the training session,

representing number of runs to reach criterion before moving onto the

next stage. Participants who did not reach criterion within 5 runs of any stage

discontinued the experiment.

Supplementary Figure 2 | Progression of hit rates for looped and

scrambled CNs across the testing session. During testing, looped CNs were

presented during half of the blocks, i.e., 5 blocks, and the other half included

scrambled CNs. As for learned target CN (Figure 4B), discrimination rate for

looped and scrambled trials are above chance from the first block.

Supplementary Figure 3 | Correlations between sleep quality, sound

imagery and discrimination rates of CNs (measured as a’). Clockwise from

the top-left: (A) Correlation between sound imagery (measured using the French

version of Willander and Baraldi, 2010) to learning and testing performance. (B)

Correlation between self-reported sleep quality (measured from a subset of

questions from the St. Mary’s sleep questionnaire) and testing performance. (C)

Positive correlation between self-reported alertness the day of the testing session

(measured from another subset of questions from the St. Mary’s sleep

questionnaire) and testing performance. (D) Positive correlation between

self-reported sleep quantity (measured from a third subset of questions from the

St. Mary’s sleep questionnaire) and testing performance. Overall, none of the

parameters we measured significantly influenced discrimination performance.
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