
lable at ScienceDirect

Hearing Research 335 (2016) 207e219
Contents lists avai
Hearing Research

journal homepage: www.elsevier .com/locate/heares
Research paper
Categorization of common sounds by cochlear implanted and normal
hearing adults

E. Collett a, b, e, M. Marx a, b, c, P. Gaillard d, B. Roby a, b, c, B. Fraysse c, O. Deguine a, b, c,
P. Barone a, b, *

a Universit�e de Toulouse, CerCo UMR 5549 CNRS, Universit�e Paul Sabatier, Toulouse, France
b Universit�e de Toulouse, CerCo UMR 5549 CNRS, Facult�e de M�edecine de Purpan, Toulouse, France
c Service d’OtoeRhinoeLaryngologie et Oto-Neurologie, Hopital Purpan, Toulouse, France
d Universit�e de Toulouse, CLLE UMR 5263, CNRS, UT2J, Universit�e de Toulouse Jean-Jaur�es, Toulouse, France
e Advanced Bionics SARL, France
a r t i c l e i n f o

Article history:
Received 1 June 2015
Received in revised form
3 March 2016
Accepted 14 March 2016
Available online 2 April 2016

Keywords:
Cochlear implant
Auditory categorization
Free-sorting
Hierarchical clustering
Multiple Correspondence Analysis
* Corresponding author. Cerveau & Cognition, CNRS
CHU Purpan, BP 25202, 31052 Toulouse Cedex, Franc

E-mail address: Pascal.barone@cerco.ups-tlse.fr (P.

http://dx.doi.org/10.1016/j.heares.2016.03.007
0378-5955/© 2016 Elsevier B.V. All rights reserved.
a b s t r a c t

Auditory categorization involves grouping of acoustic events along one or more shared perceptual di-
mensions which can relate to both semantic and physical attributes. This process involves both high level
cognitive processes (categorization) and low-level perceptual encoding of the acoustic signal, both of
which are affected by the use of a cochlear implant (CI) device. The goal of this study was twofold: I)
compare the categorization strategies of CI users and normal hearing listeners (NHL) II) investigate if any
characteristics of the raw acoustic signal could explain the results. 16 experienced CI users and 20 NHL
were tested using a Free-Sorting Task of 16 common sounds divided into 3 predefined categories of
environmental, musical and vocal sounds. Multiple Correspondence Analysis (MCA) and Hierarchical
Clustering based on Principal Components (HCPC) show that CI users followed a similar categorization
strategy to that of NHL and were able to discriminate between the three different types of sounds.
However results for CI users were more varied and showed less inter-participant agreement. Acoustic
analysis also highlighted the average pitch salience and average autocorrelation peak as being important
for the perception and categorization of the sounds. The results therefore show that on a broad level of
categorization CI users may not have as many difficulties as previously thought in discriminating certain
kinds of sound; however the perception of individual sounds remains challenging.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

For more than 25 years cochlear implants (CI) have been an
efficient method for restoring partial hearing in patients with
profound bilateral sensorineural hearing loss (Copeland and
Pillsbury, 2004). The CI has led to considerable success in the
functional rehabilitation of deafness in terms of the restitution of
speech recognition ability (Moller, 2006). However the auditory
information sent to the brain is spectrally degraded (Shannon et al.,
1995) and lacks the fine temporal structure information which is
crucial for certain aspects of speech comprehension, most notably
the perception of prosodic information (Friesen et al., 2001; Zeng
UMR 5549, Pavillon Baudot,
e.
Barone).
et al., 2005; Lorenzi et al., 2006; Marx et al., 2014). Temporal
modulations are however more optimally retained by the implant
and as a result CI users rely on these cues rather than spectral
modulations for speech comprehension (Doucet et al., 2006;
Loebach and Pisoni, 2007; Cabrera et al., 2014). These limitations
contribute to an initial period of adaptation of about six months
after implantation before CI users reach an optimal level of speech
performance (Barone and Deguine, 2011). During this initial period
of adaptation CI users develop adaptive strategies and rely strongly
on visual cues to complement the impoverished auditory signal
delivered by the implant (Summerfield, 1992; Tyler et al., 1997;
Grant et al., 1998; Kaiser et al., 2003; Rouger et al., 2007).

Other aspects of auditory perception remain problematic for
many CI users especially concerning the recognition of environ-
mental sounds and music. The reduction in fine spectral informa-
tion negatively affects the musical abilities of CI users, for example
the perception of melody and timbre within instrumental passages
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relies on fine spectral details that cannot be efficiently transmitted
through the implant (Gfeller et al., 2002; Looi et al., 2008;
Cousineau et al., 2010). Similarly, whilst a CI can improve the
awareness of environmental sounds (Looi and Arnephy, 2010)
environmental sound identification in CI users is commonly
described as poor with correct identification varying from only 45%
(Shafiro et al., 2011) to nearly 80% in experienced CI users (Reed and
Delhorne, 2005). Studies of environmental sound perception have
shown the importance of spectral and temporal dynamics for
environmental sound recognition such that more complicated
sounds (i.e. with faster changing temporal and spectral informa-
tion) are more difficult for CI to identify (Reed and Delhorne, 2005;
Reddy et al., 2009) whilst those with a more simple spectral or
temporal content are more easily identified. This may result in
sounds that have a strong sense of harmony (more than two har-
monics present in the signal) or are repetitive (Inverso and Limb,
2010). Gygi et al. (2004) also found that information within a fre-
quency band of between 1200 and 2400 Hz was linked to the
recognition of environmental sounds. Finally Shafiro (2008) iden-
tified two groups of sounds that required high or low levels of
spectral resolution for correct identification and was able to
discriminate between them based only on the number of bursts in
the envelope and the standard deviation of the centroid velocity.

Previous studies in CI users or in protocols using CI simulation
(vocoding) in normal-hearing listeners (NHL) have shown that
when reducing the spectro-temporal information both NHL and CI
users present a strong impairment in discriminating vocal from
environmental sounds (Loebach and Pisoni, 2008; Shafiro, 2008;
Leech et al., 2009; Massida et al., 2011). However, it has not been
possible to find an exact set of acoustic cues that can account
precisely for environmental sound recognition in either NHL or CI
users. In light of these observations on the limitations of sound
processing imposed by the implant it is of importance to better
understand how CI users process and discriminate vocal, environ-
mental and musical sounds. A better grasp of the cues used to
build-up a representation of these sounds could provide crucial
information to develop coding strategies that would allow pro-
cessing to be better adapted for specific sound categories.

In day to day life, human beings must contend with a multitude
of sounds almost continuously and to attend to every single one
would require a lot of effort. Part of the process that makes this
easier is categorization, which enables knowledge about the sound
to be inferred from the auditory category and is less demanding
than specifically identifying the sound. This has been found in the
categorization of phonemes, voice gender and even the material
and action of a sound source (Liberman et al., 1967; Dubois, 2000;
Belin et al., 2004; Lemaitre and Heller, 2012).

Two modes of listening are involved in categorization (Gaver,
1993). The first, “everyday listening”, refers to a listeners percep-
tion of the properties of a sound source and the semantic infor-
mation that is perceived, for example the type of material (wood,
metal, plastic), the action producing the sound (hitting, scraping,
rubbing) or the age and gender of a speaker. The second mode,
“musical listening”, refers to the perception of qualitative aspects of
the sound such as the pitch, loudness, timbre and also the
emotional content (pleasant or unpleasant). These qualities are
related to physical aspects of the acoustic signal rather than the
sound source itself. Studies have shown that in general categories
are based on everyday listening and the semantic properties of the
sound source rather than musical listening and the acoustical
properties (Gygi et al., 2007; Inverso and Limb, 2010). However it
has also been shownwhen a target sound is preceded by non-living
sounds categorization is more strongly based on acoustic infor-
mation (Giordano et al., 2010).

Common categories that have been described include human
and animal vocalizations, impact sounds, water sounds (Gygi et al.,
2007), human and traffic noise (Guastavino, 2007), living and non-
living sounds (De Lucia et al., 2012). The process of categorizing is
also influenced by the listener's experiencewhich defines their pre-
existing knowledge of categories and the potential identification of
sound sources. Importantly if a sound source cannot be identified
the relevant semantic information cannot be retrieved from cate-
gorical knowledge. Further, the type of experimental task has been
shown to have an influence on the strategies developed by par-
ticipants to categorize sounds. For example, testing similarity
somewhat forces participants to use the musical listening mode
and thus to rely more on acoustical information (Goldstone, 1994;
Gygi et al., 2007). In trying to understand how participants cate-
gorize different sounds, some studies have analyzed the categori-
zation of many stimuli with similarity matrices and
Multidimensional Scaling (MDS) (Bonebright, 1996; Guastavino,
2007; Gygi et al., 2007). This is a process whereby a large array of
similarity judgments can be reduced to only a few dimensions
representing the entire perceptual space. Work can then be carried
out to interpret the various perceptual and acoustic features on
which these perceptual dimensions are based (Bonebright, 1996).

To date there has been no study that has directly addressed how
CI users may categorize common sounds using a Free-Sorting Task
protocol (Berland et al., 2015). Studies have either used simulations
of CI processing with NHL (Gygi et al., 2007) or measured catego-
rization accuracy with a number of predefined categories that
participants were informed of prior to testing (Inverso and Limb,
2010). In the present study we therefore seek to add to the exist-
ing work on auditory categorization and to better understand how
CI users perceive three predefined groups of sounds (environ-
mental, musical and vocal) by comparing performance with NHL.
Our strategy was to select three broad classes of sounds based on
their respective ecological values. As previously mentioned the
perception of vocal sounds is highly important for social interaction
and thus the primary aim of CI coding strategies has been to focus
on the processing of these sounds. Musical sounds also constitute a
specific class of stimuli on which efforts have been directed in CI
processing due to the strong social and personal value of music to
peoples everyday lives (Looi et al., 2012) and the relative difficulty
in the transmission of the richness of such sounds by the implant. A
third class of sounds, common environmental sounds, was also
chosen as these sounds are reported by CI users as being important
for quality of life and have been studied less in comparison to vocal
and musical sounds.

The first objective was to use Multiple Correspondence Analysis
(MCA) and a Hierarchical Clustering with Principal Components
(HCPC) to see if I) CI users are able to distinguish the three groups of
sounds from one another and II) how exactly they may do this
based on semantic or acoustical perceptions of the sounds. With
poorer sound identification CI users may use categorization stra-
tegies more strongly based on the similarity of acoustical cues (via
musical listening) rather than the semantic information of the
sound or sound producing action (everyday listening). In addition
to this, the link between hearing a sound and retrieving the asso-
ciated semantic information is a process that can be affected by
familiarity with the sound (Ballas,1993) andwhich is likely affected
by periods of hearing impairment experienced by all CI users.
Finally, because auditory abilities of CI users can improve with
training (Shafiro et al., 2012, 2015), we recruited CI users who had
at least twelve months of experience with their implant. However,
it is not known exactly how the adaptation to the implant and the
period of hearing impairment may affect the link between the
perception of a sound and its semantic representation and there-
fore the categorization strategies of CI users. The second objective is
to ascertain whether any acoustical properties of the sounds can
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account for the categorization strategies used by NHL and CI users
by correlating results of acoustical analysis to those of theMCA. The
results of this study will therefore explore how CI users categorize
and discriminate different types of sounds by analyzing partici-
pants' perceptions and acoustical cues.

2. Method and materials

2.1. Participants

Two groups of participants were involved in the study. The first
group consisted of 20 normal hearing listeners (NHL) who were
native French speaking adults (9 males age 22 ± 2 years). Auditory
functions for NHL were self-reported as normal with no recent
exposure to loud noises or history of auditory or neurological dis-
orders. The second group of participants consisted of 16 adult
cochlear implant (CI) users, postlingually deaf and native French
speaking adults (7 males, age 56 ± 15 years, see Table 1). Noticeably
at only 15 years of age participant LERMAR is significantly younger
than the other participants (one tailed Crawford & Howell test
t ¼ �8.86, p < 0.001). CI users were selected from a list of “expe-
rienced” listeners with the requirement being duration of im-
plantation greater than twelve months. Only two patients, (see
Table 1
Summary of CI user data detailing participants age at testing and duration of deafness pr
implanted (L-left; R-right). The model of implant and coding strategy used by each partici
participants with a Cochlear brand implant. Scores for auditory performance only using th
correctly identified out of 20 given as a percentage; sentences in noise where the SNR
threshold of hearing in the participants' non-implanted ear which gives ameasure of resid
participant LERMAR. Finally values for the mean and standard deviation are also stated.

Participant
ID

Age at
testing

Duration
of
deafness
(years)

Duration of
implantation
(months)

Implanted
ear

CI model Coding
strategy

ALAREN 73 5 62 R Cochlear CI24RE ACE
900 11

ANDJOS 53 9 53 R Cochlear
CI24RECA

ACE
1200 10

ANSCRI 48 5 35 R Cochlear CI24CA ACE
720 9

AUZAND 54 2 34 R Cochlear Nucleus
CI512

ACE
900 10

BERCAT 51 2 62 R Cochlear Hybrid ACE
900 8

CHAJEA 72 1 83 L AB Hires 90 K CI Hi-Res
S
Fidelity
120

DAMCRI 51 2 36 R MED EL SONATA FSP
ESCPAT 48 3 114 R Cochlear Nucleus

CI24
ACE
720 9

GERJEA 52 8 81 L Cochlear Nucleus
Freedom
CI24RECA

ACE
720 9

GIDGEN 63 1 23 R CochelarCI24RECA ACE
720 10

LAMCEC 63 0.5 17 L Cochlear C512 ACE
900 10

LERMAR 15 14 126 R Cochlear CI24RCS ACE
900 16

MAMSOL 66 5 37 L AB Hires 90 K Hi-Res
S

MATARL 76 2 14 R Cochlear Nucleus
C512

ACE
900 9

RAUCLA 70 2 82 L AB Hires 90 k Hi-Res
S

SEBMAR 47 8 83 R Cochlear Nucleus
CI24

ACE
900 11

Mean 56 5 59 e

Std. dev. 15 4 34 e
Table 1), had durations close to this (13 and 15 months) with the
group average being greater (mean 57 ± 32 months). Most of the
participants presented a high level of speech recovery with a mean
speech comprehension score of 80% ± 12.4% (see Table 1). When
compared to the group average only one patient (RAUCLA) has
significantly lower scores of for disyllabic word recognition (57%,
t¼�6.022, p < 0.001) and for speech in noise comprehension (44%,
t ¼ �4.48, p < 0.001). The hearing threshold of the non-implanted
ear shows that all patients have a poor level of residual hearing
(mean 89 dB ± 18 dB). Overall the auditory performance scores
show the experience of CI listeners is homogeneous with similar
levels of auditory performance. Word recognition scores were
collected from patients during assessments with a speech therapist
prior to testing. All subjects were tested on open-set recognition for
French disyllabic words using the Fournier list (see Rouger et al.,
2007) and also for speech in noise using the standard MBAA list.
Finally all participants gave written informed consent prior to their
inclusion in the study.

2.2. Stimuli & procedure

The two groups of participants completed a Free Sorting Task
(FST) of sixteen short sounds (2e3 s duration) which are described
ior to receiving a CI in years, duration of implantation in months and which ear was
pant is also listed with the stimulation speed and maximum stimulation available for
e implanted ear are also given for disyllabic word recognitione the number of words
is þ10 dB e given as a percentage score is also stated along with importantly the
ual hearing for each participant. Unfortunately certain data could not be retrieved for

Stimulation
speed

Maximum
stimulation

Hearing
threshold (non-
implanted ear
(dB)

Disyillabic word
recognition e CI
only (% correct)

Sentence in
noise e

SNR þ10 dB (%
correct)

900 11 72.5 80 96

1200 10 105 80 95

720 9 80 85 99

900 10 70 95 73

900 8 50 60 64

NA NA 93 80 97

NA NA Deaf 70 83
720 9 100 80 95

720 9 91 75 85

720 10 96 90 89

900 10 90 95 95

900 16 e e e

NA NA 110 75 75

900 9 110 80 81

NA NA 80 55 13

900 11 100 100 100

900 10 90 80 83
e e 17 12 22
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in Table 2 alongside abbreviated ID tags and category labels. Sounds
were taken from a database owned by the PETRA group at the
University of Toulouse Le Mirail (http://petra.univ-tlse2.fr) and
were chosen to cover a broad range of semantic and acoustic in-
formation as examples of the three predefined categories e envi-
ronmental, vocal and musical sounds. All stimuli were monophonic
and recorded in.wav format with a sampling frequency of
44,100 Hz. A limit of sixteen stimuli was chosen following advice
from the ORL department at the Purpan Hospital to ensure that the
test would not be too fatiguing for CI users and therefore limit this
as a source of bias. The two participant groups were tested in quiet
listening rooms, NHL at the CerCo laboratory and CI users at the
Purpan Hospital. Both groups were seated in front of a PC monitor
positioned at eye-level with two Roline Digital loudspeakers
located on each side at a distance of 1 m. Stimuli were presented in
stereo at a level of 65 dB SPL (measured at head heightwith a Sound
Level Meter at a distance of 1 m) via the loudspeakers in free-field
listening conditions. Testing was carried out using the open-source
TCL-LabX software (http://petra.univ-tlse2.fr/tcl-labx/) which acted
as the interface for the FST. The sixteen soundswere represented on
the computer by sixteen numbered and colored squares which
were positioned in the same order for all participants.

The task for participants was to listen to the sixteen sounds and
place them into groups i.e. create categories by any means they
chose. Only minimal feedback was given by the experimenter in
order to facilitate the completion of the experiment. Sounds were
played by using the PC mouse to double click on each square and
categories were created by dragging and positioning squares
together on screen. This was always done by the participants
themselves, including the CI users. Once participants had finished
positioning the squares into categories they were asked to listen to
each sound a final time to verify their choices before ending the
experiment. Participants were then asked to enter a brief descrip-
tion for each category into the computer using the keyboard. There
was no limit on the amount of time given to complete the test or to
the number of times a specific sound could be listened to (referred
to as the number of playbacks). Participants were also allowed to
create as many or as few categories as they wished such that a
single category could contain only a single stimulus or all sixteen.
The TCL-LabX software also recorded performance data and sta-
tistics for all participants including the number of categories
created, the number of playbacks and the duration of the
experiment.
Table 2
List of abbreviated labels with their predefined category (as determined by the
experimenters) and full descriptions of the 16 sound stimuli used in the free-
categorization task.

Sound ID Description Predefined category

ALRM Alarm clock ringing Environmental
CAR Car engine starting
DR Door opening
FSTP Footsteps
GLS Glass breaking
HELI Helicopter flying overhead
WTR Running water
BEL Church bells
GTR Arpeggiated notes on an acoustic guitar Musical
OBOE Single note from an oboe
VLN Short 7 note melody on a violin
XLY Single note from a xylophone
CGH Male voice coughing Vocal
FEM Female voice speaking
LGH Female voice laughing
MALE Male voice speaking
2.3. Categorical analysis

To analyze the categories that participants created two different
functions were used in R0. Firstly Multiple Correspondence Analysis
(MCA) was applied to the indicator matrix outputted by the TCL
LabX software. The indicator matrix itself represents the results as
an array of categorical variables (participants) as columns and
categorical items (sound stimuli) as rows, with each cell containing
a number defining the categorymembership of each sound for each
participant. MCA uses Correspondence Analysis (CA) in order to
represent each sound as a data point in an n-dimensional Euclidean
space based on the categorical values i.e. the categories made by
participants. Each dimension is chosen to account for the largest
amount of variance possible within the data-set and dimensions
are outputted in descending order of variance covered. MCA also
performs analysis on the participants in order to find how strongly
individual results coincide with the dimensions and as a conse-
quence allows the similarity of participants categorization strate-
gies to be analyzed (Cadoret et al., 2009). A total of fifteen
dimensions were used in the analysis with those that covered 8% or
more of the total variance being retained. This lead to the first 5
dimensions being used for Hierarchical Clustering based on Prin-
cipal Components (HCPC). The two most significant dimensions
(Dim 1 & Dim 2) were also focused on as they account for the most
amount of variance in the data and also show the most significant
correlations to acoustic variables measured for the sounds (see
Table 6). Importantly dimensions are calculated only to account for
variability within the data and are not directly related to any
perceptual or physical characteristic of the sounds or ecological
data of the participants. There is no a-priori knowledge that can be
used to automatically make such a relation and so a certain amount
of interpretation is used when commenting on the dimensions
(Cadoret et al., 2009).

RV coefficient (RVc) values were also calculated in R0. The RVc is
a variation on the squared Pearson correlation coefficient that
calculates the correlation between two sets of coordinates repre-
sented in a matrix (Robert and Escoufier, 1976; Qannari et al., 2014).
In the case of this study the RVc was used to find the correlation
between the coordinate matrices for the first five MCA dimensions
of the two participant groups.

Secondly a Hierarchical Clustering based on Principal Compo-
nents (HCPC) was performed on the results of the MCA analysis in
order to view a simplified version of the categories of sounds in the
form of dendrograms. When using this analysis it is not possible to
account for all of the variance (inertia) within the data, i.e. the
variability of participant responses, and so a certain amount re-
mains unaccounted for. By increasing the number of desired cate-
gories the inertia can however be reduced and it is using this
process that the we can choose a final number of categories: if the
number of categories is Q then the optimal number of categories is
found when the change in inertia is greater when moving from Q�1

to Q than from Q to Qþ1 (Husson et al., 2010). This can also be
defined as the value for Q which minimizes Equation (1).

Q � Qþ1

Q�1 � Q
(1)

Categorical analysis was concluded by finding the Cophenetic
Correlation Coefficient (CpCC) (Saraçli et al., 2013) which gives a
measure of how accurately the distances between items in the raw
data are preserved in the dendrogram (Carr et al., 1999).

Participants' category descriptions were also evaluated as to
whether or not the categorization was based on semantic infor-
mation concerning the sound source or on qualitative information
linked with the acoustic signal. For each participant group the

http://petra.univ-tlse2.fr
http://petra.univ-tlse2.fr/tcl-labx/
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number of descriptions that made reference to either semantic or
qualitative acoustic aspects of the sound were totaled across all
sounds and all participants and then turned into an overall per-
centage. Examples of descriptions relating to semantic information
were “domestic noise”; “voice, laughter, someone talking”; “musical
instruments”. Whilst examples of descriptions referring to qualita-
tive acoustic aspects included “melodies”; “noise”; “ringing tones”;
“disagreeable sounds”. In order to further understand the categori-
zation performance of participants an estimation of “Category
Identification” was inferred from the participants' category de-
scriptions. For each sound the associated category description was
evaluated to see if it corresponded to the designated pre-defined
category (see Table 2) with percent correct scores then calculated
across both sounds and participants In some cases specific de-
scriptions were not given and this is reflected in Table 3 by the “%
No comment”. In addition a value for “Categorization Accuracy”
was calculated as the percentage of stimuli-pairs present in each
participant's category choices compared to the stimuli-pairs con-
tained in the predefined categories, of which there are forty
possible pairs (Table 2).
2.4. Acoustic analysis

Alongside categorical analysis of participant's responses sounds
were analyzed usingMatLab for a range of acoustic variables similar
to Gygi et al., 2004. To evaluate the functional significance of the
MCA dimensions the acoustical values obtained for each sound
were then correlated using a Pearson correlation to the coordinates
of each MCA dimension of the two participant groups. Six different
kinds of acoustical measurements were explored and are detailed
below.

1. Pitch measures e Including the mean and median frequency,
standard deviation of frequency, max frequency, mean pitch
salience, max pitch salience. Pitch values were calculated using
Slaneys Correlogram model of pitch perception (Slaney and
Lyon, 1990) using a temporal windows of 16 ms, frame-rate of
12 frames per second and sampling rate of 16 kHz having firstly
downsampled the signal to 16 kHz. Pitch salience, which can
also be described as the perceptual strength of the pitch, is
calculated by dividing the maximum value of the correlogram
(which occurs at zero time lag) by the estimated pitche taken as
the time lag with largest correlation energy. Values range from
0 to 1 where 1 indicates a periodic soundwith easily perceivable
pitch.

2. Spectral measures e Analysis was made on individual sounds to
compute the centroid, skew, kurtosis, mean centroid, spectral
centroid velocity, spectral centroid uniformity and spectral
centroid standard deviation. Centroid, skew and kurtosis are
measures of the moments of the spectrum calculated from the
Power Spectral Density. The centroid is the central mass of the
spectrum linked to the brightness of sound. The skew corre-
sponds to the asymmetry of the probability distribution of
Table 3
Category Identification e calculated by comparing the participant's category descriptio
accuratelymatch. Percentages are calculated across participants for each sound and then a
or vocal (V). Some participants were unable to give a comment for certain categories an

Category identification (%) NHL

E M V

Accurate 56.9 82.5 77.5
Inaccurate 40.6 17.5 22.5
No comment 2.5 0 0
frequencies while the kurtosis is a descriptor of the shape of a
probability distribution. The remaining variables related to the
centroid values are measures of spectral movements within the
sounds.

3. Envelope measures e Including the number of peaks, mean peak,
number of bursts, mean burst, total burst duration, duration
ratio computed from the wave envelope of each sound. Peaks,
also described as fast transient changes, are defined as points in
the envelope where the amplitude is greater than the preceding
point by at least 80% of the total amplitude range. Bursts are
defined as continuous increases in amplitude of 4 dB held for at
least 20 ms (Ballas, 1993), whilst the duration ratio provides an
evaluation of the “roughness” of the envelope from the ratio of
bursts to overall duration. Envelopes were extracted using 5th
order low-pass Butterworth filters with cut-off frequency at
20 Hz, with peakmeasures calculated having first downsampled
the signal to 10 kHz.

4. Periodicity measures e Values were obtained on the number of
autocorrelation peaks, the maximum autocorrelation peak,
mean and standard deviation of autocorrelation peaks and
range of data. Periodicity is evaluated by firstly computing the
autocorrelation of each sound then calculating the previously
stated variables to give an indication of the frequency, strength
and uniformity of periodicities. The stated variables then give an
indication towards the frequency, strength and uniformity of
these periodicities.

5. Cross-Channel correlation e an average value of the correlations
between envelopes across different frequency channels. Enve-
lopes were extracted using the same process described above
and frequency channels were created using band-pass filters
centered at 212, 424, 848, 1697, 3394 and 6788 Hz. The six fre-
quency channels generated a total of 15 correlations fromwhich
an average was calculated to give an indication of signal
uniformity.

6. RMS values e The RMS power was measured across different
frequency channels centered at frequencies of the Bark scale
(Zwicker, 1961).
2.5. Statistical analysis

Statistical testing (ANOVA and t-test) was performed on par-
ticipants performance data (recorded by the TCL-LabX software) to
reveal if any significant effects of the participant group or type of
sound could explain possible differences of categorization between
the two groups. Similar to correlations made with acoustical in-
formation, a correlation analysis has also been performed between
the participant coordinates of the MCA dimensions and the audi-
ological and historical information that distinguish the CI users e

age at testing, duration of deafness, duration of implantation and
audiological performances (disyllabic word recognition, sentence
in noise comprehension).
ns to the predefined categories for each sound and inferring whether or not they
veraged for each of the three predefined categoriese environmental (E), musical (M)
d this is reflected by the % of “No comment”.

CI

Average E M V Average

68.4 58.6 57.4 70.3 60.5
30.3 37.5 45.3 28.1 37.1
1.3 3.9 0 1.6 2.3
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3. Results

Our results show that in CI users and NHL categorization is
predominantly based on semantic information as a result of iden-
tifying a sound source. CI users perform the FST in a similar manner
to NHL and also appear to categorize the sounds in a very similar
manner with outputs of MCA and HCPC analysis in close resem-
blance for both participant groups. However, certain differences do
exist, most notably the greater variability amongst CI users in
comparison to NHL. Differences are most likely explained by the
poorer perception of spectral and temporal information by CI users
as well as differences in listening experience and familiarity with
the auditory environment.

3.1. Global performance

The duration for completing the task was on average longer for
CI users compared to NHL (mean 330 s vs. 539 s, p < 0.01).
Regarding the number of playbacks, ANOVA and post-hoc analysis
(Turkey-Kramer test) showed no differences between NHL and CI
(p ¼ 0.272). However, when grouping sounds as either musical,
vocal or environmental there was a significant effect on the number
of playbacks (ANOVA, p < 0.01) such that NHL listened to envi-
ronmental sounds more times on average (7.5 ± 0.9) than vocal
sounds (5.0 ± 0.46) or musical sounds (5.4 ± 0.9). A similar pattern
is seen for CI with environmental sounds being listened to more
(5.6 ± 0.44) than musical (5.3 ± 0.5) and vocal sounds (4.97 ± 0.92)
however this only observed as a trend (ANOVA, p ¼ 0.5). There is
also an effect of specific sounds (p ¼ 0.026) such that across both
NHL and CI users the sound of a door closing (DR) was listened to
significantly more times (6.8 ± 0.55) than the sounds of oboe (OBO)
(4.1 ± 0.55) and male voice (MALE) (3.7 ± 0.56).

Category descriptions given by participants were used to eval-
uate category identification. Table 3 shows that performance was
similar for both participant groupswithmean values of 68% for NHL
and 61% for CI users, whilst ANOVA analysis showed no significant
differences across the participant groups or category type. Fig. 1
Fig. 1. Line graph of category identification e Category identification of NHL (x-axis)
and CI users (y-axis) is plotted for all sixteen stimuli as labeled. The box plot embedded
within the figure shows the overall data for both participant groups, with the median
value, 25% and 75% percentiles, whiskers for most extreme non-outliers and finally
outliers shown as red crosses (+). The line of equal categorization accuracy between CI
users and NHL is plotted with the dashed blue line. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
provides further evidence for the similarity of category identifica-
tion by demonstrating a positive correlation between the two
participant groups (spearman rank correlation r ¼ 0.55,
p ¼ 0.0273). Category identification of individual sounds is similar
for both participant groups apart from the sounds of coughing,
xylophone and oboe (CGH, XLY and OBO) which are less accurately
categorized by CI users.

Categorization accuracy was significantly greater for NHL
compared to CI users, 39% vs. 28% (Kruskall-Wallis, p < 0.05). Values
are relatively low likely due to inaccurate judgment of the pre-
defined categories, for example themisallocation of the church-bell
sound (BEL). This sound was considered by the experimenters as
environmental because it corresponds to a typical sound heard in a
traditional countryside. However it was paired with environmental
sounds by only 10% of NHL and CI users, instead most of the time
being paired with musical sounds. Category descriptions for BEL
also referred to musical characteristics in 70% of NHL and 56% of CI
users. Fig. 1 shows that category identification of BEL as an envi-
ronmental sound is only 15% for NHL and 31% for CI users. When
removing BEL from the calculations of categorization accuracy re-
sults are raised for both NHL and CI users 45% and 31% respectively,
which are again significantly different (Kruskall-Wallis, p ¼ 0.038).
Overall these results show that NHL perform the task more accu-
rately i.e. in stronger agreement to the predefined categories of
environmental, musical and vocal sounds. However a certain
number of CI users also follow this strategy of categorization and
show clear similarities to NHL as evidenced by the example of the
church-bell sound.

Using the category descriptions given by participants', analysis
was also carried out to determine the percentage of comments that
referred to either semantic or acoustic perceptions. Table 4 shows
that semantic descriptors were used by NHL in 83.9% of cases and
by CI in 67.2%, whilst acoustic descriptions were used by NHL for
15.3% of cases and by CI in 25.4%. Whilst the pattern of results is
similar for both groups, when comparing the data across individual
cases there are significant differences between NHL and CI for both
semantic (Kruskall-Wallis, p ¼ 0.002) and acoustic descriptions
(Kruskall-Wallis, p ¼ 0.034). This shows that the perception of
sounds is different between NHL and CI users. Finally, assuming
that the use of acoustic descriptions is a result of an inability to
identify sounds the difference in results may be a linked to the
poorer identification ability of CI users.

3.2. Categorical analysis

3.2.1. Hierarchical clustering
The overall categories produced by both participant groups are

displayed in the dendrogram output of HCPC analysis in Fig. 2.
Based on the change in inertia (as described in the Methods and

Materials under Categorical Analysis) six final categories were
found for both CI users and NHL. However, from individual subset
data the average number of categories is slightly lower for NHL
compared to CI users (5.4 ± 1.4 and 6.4 ± 1.6 respectively) although
Table 4
Percentage of participants comments that refer to either semantic or acoustic at-
tributes. Values have been calculated by scoring the comments for semantic or
acoustic descriptions, summating across participants and giving a percentage for
each sound and then finally averaging across all sounds. For example 83.9% of
comments given by NHL referenced concerned semantic descriptions.

Subject group Category description

% Semantic % Acoustic % Other

NHL 83.9 15.3 0.8
CI 67.2 25.4 7.4



Fig. 2. Hierarchical clustering trees show the arrangement and categorization of stimuli for NHL (left panel) and CI users (right panel). Overall categories outputted by the hi-
erarchical clustering (HCPC) are indicated by colored rectangles whilst the upper limit of these rectangles indicates the point at which each tree has been cut (as described in the
main text). The height axis gives the perceptual distance between each stimulus whereby a large height indicates that participants deemed those two stimuli to be highly dissimilar
and vice versa. Finally stimuli are labeled using the abbreviated sound ID's from Table 2 and symbols representing the predefined categories of environmental (‘X’), musical (‘D’) and
vocal sounds (‘O’).

Table 5
Variance accounted for by each dimension of the MCA analysis for both CI users and
NHL. A total of 15 dimensions were used in the analysis with the fivemost important
retained.

Participant group Variance accounted for (%)

D1 D2 D3 D4 D5 Unaccounted

NHL 20.4 18.6 12.6 11.6 8.8 28.0
CI 14.5 13.0 9.7 9.4 7.7 46.8
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this does not reach significance (two-tailed t-test p ¼ 0.068).
Further, Cophenetic Correlation Coefficients (CpCC) were calculated
as 0.77 for NHL and 0.79 for CI users and demonstrate that the
dendrograms represent well the initial data which is therefore
similar.

Whilst the dendrograms do not directly show the three cate-
gories of environmental, musical and vocal sounds both participant
groups produce categories pertaining to these descriptions. For
example both groups produce categories of vocal sounds which are
clearly separated from the others at heights of 0.897 for NHL and
0.7 for CI users. NHL also separate the linguistic (MALE, FEM) and
non-linguistic vocal sounds (LGH, CGH), at a height of 0.379 on the
dendrogram, where as CI users create only one group of vocal
sounds (MALE, FEM, LGH) and place the sound of a male coughing
(CGH) amongst environmental sounds.

Category descriptions associated with this sound were split
evenly (33%) between vocal, environmental (described as “noise”)
and musical (described as “rhythmic”) highlighting an unclear
consensus of CI users when categorizing this sound.

Both participant groups create categories of musical sounds
although CI users distinguish these further into two groups. The
first contains the bell, guitar and violin sounds (BEL, GTR and VLN)
which include multiple pitches whilst the second contains the
oboe, xylophone and alarm (OBOE, XLYand ALRM) which are sounds
containing only one sustained pitch. Environmental sounds are also
grouped together for both participant groups although NHL pro-
duce a category of vehicle sounds containing the car and helicopter
(CAR and HELI) and also place the water sound (WTR) on its own. In
contrast CI users place all environmental sounds together except
the footstep (FSTP) and the helicopter (HELI) sounds.

The ordinate of Fig. 2 shows that inter-category distance is
greater for NHL (mean ¼ 0.76 ± 0.19) than for CI users
(mean ¼ 0.59 ± 0.12) (two-tailed t-test p ¼ 0.006). This reflects a
more homogeneous strategy of categorization in NHL where cate-
gories are more strongly separated. When comparing the intra-
category values these are smaller for NHL (mean ¼ 0.017 ± 0.018)
compared to CI users (mean ¼ 0.034 ± 0.024) (two-tailed t-test,
p ¼ 0.019). Sounds within each category are therefore more similar
for NHL than CI users. In addition co-occurrence (similarity)
matrices of the sounds were used to find the intra-category simi-
larity by averaging the values of all intra-category pairs in accor-
dance with the dendrograms (Fig. 2). Values of similarity were
significantly higher (Kruskall-Wallis, p < 0.05) for NHL (0.65 ± 0.2)
than for CI users (0.4 ± 0.16) echoes the analysis of the dendrogram
intra-category distances. A value of the RV coefficient was also
calculated between the two co-occurrence matrices and found to
be 0.89, the same as originally calculated using only the first two
MCA dimensions. Co-occurrence matrices were also plotted
(Supplementary Fig. 1) and show the greater agreement of NHL
participants in their categorization strategy, 23% of category pairs
having value either greater than 0.95 or less than 0.05 i.e. pairs that
were created by very many or very few participants. However there
are no values beyond these limits for CI users such that the pattern
of results shows less agreement. Similar pairs can also be observed
between the two groupse GTR-VLN, BEL-GTR, FEM-MALE whilst CI
users also pair together CAR-WTR and CAR-GLS, suggesting a dif-
ference in categorization strategy compared to NHL.
3.2.2. Multiple Correspondence Analysis
MCA was applied to the categorization performed by the two

groups of participants in order to assess their overall categorization
strategies. Analysis was restricted to the dimensions able to explain
the most variance within the original data, corresponding to values
of equal to or greater than 8% of the total. When taking into account
these criteria, five dimensions emerged in both groups (Table 5).
The amount of variance accounted for by each dimension is shown
in Table 5 and is much higher for NHL than for CI users. Indeed for
NHL Dim 1 & 2 account for 39% of the total variance compared to
only 27% of that for CI users whilst the variance unaccounted for is
less for NHL (28%) compared to CI users (45.7%). All together these
data constitute another indicator as to the greater variability of
categorization strategies performed by the CI users. Based on the
fact that Dim 1 & Dim 2 account for the most variance of any two
dimensions together they were prioritized for further analysis
especially with regard to the acoustic analysis (see below).

Fig. 3 displays the Factor Map of the two principal dimensions



Fig. 3. Factor maps of category individuals (sound stimuli) e stimuli are plotted along the first two dimensions of the MCA analysis (Dim 1 and Dim 2) for NHL (left panel) and CI
users (right panel). Analysis on each participant group was calculated separately meaning that dimensions are not directly equatable between the two figures. As noted in the
differences between the x and y scales and the amount of variance covered by each dimension e given as a percentage. Stimuli that lie at zero (dotted line) are not considered to be
part of the corresponding dimension e.g. the alarm sound (ALRM) on Dim 1. Finally the stimuli are colored according to the categories presented in Fig. 2 and are labeled by the
abbreviated sound ID's given in Table 2 symbols representing the predefined categories of environmental (‘X’), musical (‘D’) and vocal sounds (‘O’).
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(Dim 1& Dim 2) and shows three categories of sounds for both NHL
and CI users. The pattern is clearer for NHL, with distinct categories
corresponding to human-voice (far right), musical sounds (bottom-
left) and environmental sounds (top-left). Of interest, and unex-
pectedly, the Factor Map for CI users presents a similar pattern
although the distribution of sounds is more dispersed. For both
participant groups Dim 1 separates the vocal sounds from all
others. Linguistic and non-linguistic stimuli are indistinguishable
although the sound of a male coughing (CGH) is located away from
the vocal sounds by CI users in agreement with the dendrogram
clustering (Fig. 2). With regards to Dim 2 there is a clear separation
of musical and environmental sounds for NHL. This dimension also
has little or no bearing on the categorization of the vocal and alarm
sounds (ALRM, MALE, FEM, LGH and CGH) as they lie in close
proximity to the zero-line. Even though Dim 2 also separates the
musical and environmental sounds for CI users, it now plays a role
in the categorization of all sounds suggesting that Dim 2 cannot be
interpreted in exactly the same way for both participant groups.

Tomore precisely assess the similarities of categorization an RVc
score was calculated using the five retained dimensions (Table 5)
and was found to be 0.69 (p < 0.001) whilst for only the first two
dimensions, 0.89 (p < 0.001). These results show similarities in the
raw data sets and emphasize that the performance of CI users is
very similar to that of NHL.

To assess the homogeneity of categorization, analysis was per-
formed on the factor maps derived from the two populations of
participants (Fig. 4). Similar to that obtained from Fig. 3, the results
are more concise for NHL who present a strong uniformity with
respect to the use of Dim 1 & 2. Indeed, 86% of NHL have a value of
0.8 or greater for Dim 1 and 66% for Dim 2. Two participants (ACE16
and JRE06) are quite atypical and appear opposed to this common
strategy. Although it is not possible to know how each sound was
identified an idea of the category perception can be garnered from
the category descriptions. These include words such as “happiness,
destruction, leaving,, morning” and suggest that the two participants
tend to group the sounds based on emotional or ambiguous criteria,
rather than semantic information related to the sound producing
object.
CI users present a more dispersed pattern of results (Fig. 4) with
only 50% of participants having a value of 0.8 or greater for Dim 1
and 31% for Dim 2. Unlike NHL this shows that fewer CI users are
using the first two dimensions and are instead likely using varying
categorization strategies. Some participants are again outside the
main repartition, for example participant MATARL, who did not use
any voice-related descriptions for any of the four vocal sounds. This
is in contrast to other CI users and lends weight to the interoper-
ation of Dim 1 being associated with the perception of vocal
sounds. In order to have a stronger indication of the functional
interpretation of each dimension the data was re-analyzed using
only those participants who had a value greater than 0.8 (see Fig. 4).
For Dim 2 this increased the amount of variance accounted for from
13.03% to 15.45% and had the effect of making the cluster con-
taining musical sounds more distinct. When the same technique
was applied to Dim 1 the variance accounted for rose from 14.47%
to 15.17% and the separation between vocal sounds and other
stimuli became clearer, thus confirming the initial interpretations
of the first two dimensions.
3.3. Acoustic analysis of sounds

In order to understand the influence of specific acoustics char-
acteristics on the categorization of the stimuli, multiple correlation
analysis was performed between the results of the MCA and
acoustical measurements as selected from Gygi et al., 2004. Table 6
shows the most significant correlations to Dim 1 & Dim 2.

For both participant groups Dim 1 & 2 show correlations to a
selected set of nine acoustical variables. The only differences being
the Cross-channel correlation, Mean Pitch Salience and the number
of peaks (as defined in the methods section) in the waveform.

The most strongly correlated variables are illustrated as box
plots for three broad categories of sounds (Fig. 5) which are ob-
tained from the dendrograms (Fig. 3) and which correspond to
environmental, musical and vocal sounds. The clearest distinction
between these three groups comes in the analysis of theMean Pitch
Salience and Mean Autocorrelation Peak (Fig. 5 panels A & C). As
would likely be predicted musical sounds have a higher value of



Fig. 4. Factor maps of category variables (participants) e similar to Fig. 3, however this time participants involved in the study are plotted along the first two dimensions of the
MCA analysis. This is done to show how strongly each participant adheres to the use of a particular dimension with high values indicating a strong adherence. Percentages are again
given to show much variance is covered by each dimension.

Table 6
Acoustic variables that show the strongest correlation to the coordinates of Dimension 1 & 2 with significant correlations in bold. It should be noted that some r-values were
initially negative but have been writtenwithout sign due to the scale of the axis used for MCA analysis (see Fig. 2) which is in fact arbitrary and as such does not influence the
relationship between the acoustic values and the MCA dimensions.

Acoustic Variable Correlation (r & p values)

CI-D1 CI-D2 NHL-D1 NHL-D2

Autocorr. Peak (Mean) 0.13, 0.62 0.64, 0.008 0.26, 0.34 0.72, 0.002
Autocorr. Peak (std) 0.14, 0.61 0.64, 0.008 0.27, 0.31 0.71, 0.002
Waveform Peak (Mean) 0.45, 0.083 0.08, 0.77 0.49, 0.056 0.015, 0.95
Mean bpf 0.63, 0.01 0.35, 0.19 0.4, 0.13 0.44, 0.09
Pitch Salience (mean) 0.068, 0.8 0.72, 0.002 0.13, 0.62 0.84, p < 0.001
Pitch Salience (max) 0.27, 0.32 0.45, 0.08 0.055, 0.84 0.55, 0.027
RMS 150 Hz 0.53, 0.036 0.17, 0.53 0.61, 0.012 0.11, 0.69
RMS 250 Hz 0.064, 0.81 0.66, 0.005 0.21, 0.42 0.64, 0.008
RMS 350 Hz 0.47, 0.064 0.27, 0.31 0.42, 0.11 0.22, 0.42
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mean pitch salience (median NHL ¼ 0.94, CI ¼ 0.84) than envi-
ronmental sounds (NHL ¼ 0.34, CI ¼ 0.34). The value of the mean
autocorrelation peak is also higher for musical sounds
(NHL ¼ 0.043, CI ¼ 0.039) than both environmental (NHL¼ 0.0078,
CI¼ 0.0078) and vocal sounds (NHL¼ 0.01, CI¼ 0.009). This pattern
could indicate that both participant groups distinguish the sounds
based on the pitch saliencee the strength of pitch; and the value of
the autocorrelation peaks e a measure of the uniformity of repe-
titions within the sound.

Dim 1 coordinates are also correlated with the RMS at lower
frequency bands centered at 317 and 400 Hz in both NHL and CI
patients and with 150 Hz in NHL (approaching significance for CI
users, see Table 6). Importantly the fundamental frequency of the
human voice is on average 85e180 Hz for males and 165e255 Hz
for females (Baken, 1987). Linguistic sounds used in this study
(MALE & FEM) have mean frequencies of 134 and 196 Hz and also
RMS values in the 150 Hz band of 81 dB & 75 dB respectively. The
correlation of the RMS at lower frequency bands therefore lends
support to the idea that Dim 1 is associated with discriminating
between vocal and non-vocal sounds. The correlation of Dim 2 to
the RMS at 250 Hz is likely caused by the fact that within this
frequency band themusical sounds XLY, GTR, BEL and VLN have high
RMS values of 80, 90, 83 and 80 dB respectively. Average RMS
values across the lower frequency bands (Fig. 5D) do not mirror the
pattern of results along Dim 1 (Fig. 3) which clearly separates the
vocal stimuli from the other sounds. Fig. 5D shows vocal sounds
have a narrower range of RMS values that also overlap with the
musical and environmental sounds such that the RMS in these
frequency bands is likely not the only method of distinguishing the
vocal sounds.

With regards to Dim 3e5 there are few significant correlations
for NHL e only Dim 5 is correlated to the RMS at 150 Hz, spectral
kurtosis and number of bursts. The data for CI users on the other
hand is correlated to multiple variables, for example Dim 3 to the
number of autocorrelation peaks, themean burst, mean peak, mean
& median frequency, spectral skew & kurtosis and RMS of fre-
quency bands centered at 450, 570 & 700 Hz. Also Dim 4 correlates
to measures of the autocorrelation function. Although these cor-
relations are not large it again shows the greater variability of re-
sults within the CI users and use of multiple categorization
strategies.

3.4. Impact of CI users individual history

Additional correlation analyses were performed between the
coordinates of the CI user map (Fig. 4) and the CI user data (Table 1),
with the results shown in Table 7. Notably the level of speech
comprehension recovery does notmatch the pattern of results seen
in Fig. 4. There are also no significant correlations observed be-
tweenMCA results andmeasures of speech performance (disyllabic
word recognition and sentence in noise recognition). For example,
participants GERJEA, BERCAT, MAMSOL and RAUCLA are the



Fig. 5. Box plots for the acoustic measurements of stimuli which show significant correlation to both participant groups as highlighted in Table 6. Values are calculated for the
three categories of sound demonstrated by NHL (orange) and CI users (blue) in Fig. 3, where Cat-1 corresponds to environmental sounds, Cat-2 to musical sounds and Cat-3 to vocal
sounds. Box plots show the median value, 25% and 75% percentiles with whiskers the most extreme non-outliers and finally outliers shown as red crosses (+). A,B) Pitch salience
(mean and max) e measured from 0 to 1 gives the strength of perceived pitch of a sound with the mean calculated as the average of all correlogram frames and max the maximum
value; C) Autocorrelation Peak mean e the mean value of peaks found in the autocorrelation function of each sound; D) RMS (dB) of lower frequency bands centered at 150, 250 &
350 Hz covering a bandwidth of 100e400 Hz. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 7
Correlations of CI user data from Table 1, with other participant data as well as
coordinates of each CI user from the MCA analysis, as seen in Fig. 3. Only the most
significant correlations (i.e. lowest p values) are shown with those having a p value
less than 0.05 shown in bold. Correlations in the table aremade to the entire data set
including subject LERMAR e see main text for further comments.

CI user data Correlation (r & p values)

Dim 1 Dim 5

Age at testing 0.45, 0.084
Duration post implantation 0.49, 0.053
Hearing threshold of the non-implanted ear 0.48, 0.07
Disyllabic words score 0.49, 0.066
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poorest performers in sentence recognition in noise but show a
similar use of Dim 2 to other participants. Similarly participant
MATARL who shows good speech perception scores has a much
lower coordinate value of both Dim 1 and Dim 2 (Fig. 4, 0.34 & 0.37
respectively). Further, the correlation analysis shows a trend for
Dim 1 associated with the duration of implantation (r ¼ 0.456,
p ¼ 0.053) and for Dim 5 with the age at testing (r ¼ 0.446,
p¼ 0.084). Dim 5 accounts for a small amount of the variance (7.4%)
compared to the other dimensions and contrasts the sound heli-
copter (HELI) with other sounds. Thus the trend for an effect of age
associated with Dim 5 is likely to be very weak in the present study.
4. Discussion

In the present study a Free-Sorting Task (FST) of common
sounds was developed and tested with groups of normal hearing
listeners (NHL) and cochlear implant (CI) users. Whilst previous
studies have tested aspects of auditory categorization amongst
populations of normal hearing and hearing impaired listeners this
study is the first to directly test CI users and NHL within an open
FST. Analysis of the categorization performed by both participant
groups is carried out using MCA and HCPC and is supported by
correlations with acoustic analysis and CI user data to provide more
details of the categorization strategies used. Overall CI users show
comparable levels to NHL in the discrimination of the three pre-
defined categories of sounds (environmental, musical and vocal).
Correlations with acoustic measurements also show that certain
spectral and temporal information within the raw acoustic signal
may be used by CI users to discriminate between the different
categories. This includes information within lower frequency
channels important for the perception of vocal sounds; spectral
information (pitch saliency) used to distinguishmusical sounds and
temporal information (measures of periodicity) used to distinguish
repetitive sounds.
4.1. Similarities of categorization processes between NHL and CI
users

There are obvious similarities when comparing the results of the
two participant groups, most notably in the separation of the vocal,
environmental and musical sounds. Interpretations of Dim 1 & 2
strongly suggest that NHL and CI users categorize the sixteen
sounds in a similar manner. However, the strategies used by the
two participant groups to arrive at these results may be different.
Firstly the implant delivers a poorer quality stimulus with less
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spectral information that CI users can use in their perception of
sounds. And secondly, due to periods of deafness and adaptation to
hearing with an implant, cortical reorganization experienced by CI
users could affect their subjective experience of sounds, for
example their degree of familiarity with previously encountered
sounds and the development of familiarity with new sounds
(Loebach and Pisoni, 2007).

Previous studies of auditory categorization (Gaver, 1993; Gygi
et al., 2007; Lewis, 2012) suggest that categories are primarily
based on the semantic information of a sound producing object/
action, which follows from identification of said object/action. Less
important are the acoustical characteristics of the sound which
determine the qualitative perceptions of a listener, for example the
pitch, the roughness or the emotional content of a sound. Indeed,
the descriptions provided by participants mostly refer to source
properties (e.g. “vehicle noise”, “noise in the house”) rather than
qualitative aspects of the sounds (e.g. “treble tones that crescendo”
or “complementing rhythm”). However the “acoustical” bias
observed by Giordano et al. (2010), whereby sounds preceded by
non-living sounds were categorized more strongly by acoustical
means, suggests that in certain conditions the preference for using
semantic information is altered. This could be due to the identifi-
ably of sounds, as non-living sounds were less well identified, and
could therefore have led to stronger use of the “musical listening
mode” and the concentration on acoustical rather than semantic
similarities. The current study would support the initial conjecture
that listeners focus predominantly on the semantic source infor-
mation and then secondly the qualitative acoustic information. In
addition the similarity in results for categorization accuracy and
category identification suggests that at a category level CI users
perceive the sounds in a similar way to NHL. This means that the
link between hearing the sound and the semantic representation is
still strong for CI users in spite of the reduced auditory input.
However, the differences in category descriptions (Table 4) would
suggest that NHL have a greater ability to identify the sounds. CI
users more often describe the qualitative acoustic characteristics, a
process which happens when sound-source identification fails.

4.2. Dimension 1 e the importance of vocal sounds

MCA analysis has shown for both participant groups that Dim 1
is related to a distinction of vocal vs. non-vocal sounds. The cor-
relation of Dim 1 values to the RMS of voice related frequency
bands and the distinction of vocal sounds in Figs. 1 and 2 supports
this idea and is therefore most likely the first and most important
distinction that participants are making.

A similar free-sorting approach in NHL (Gygi et al., 2007) found
a separation of vocal vs. non-vocal sounds as well as clear cate-
gories of animal vocalizations and transport/mechanical sounds.
Alongside the present study this appears to contradict previous
studies that showed difficulties in vocal vs. non-vocal sound
discrimination for CI users (Fu et al., 2005; Molin et al., 2005;
Gonzalez and Oliver, 2005; Kovacic and Balaban, 2009; Luo et al.,
2007). Massida et al., 2011 also showed that when spectral infor-
mation is reduced both NHL and CI users present a strong impair-
ment in discriminating vocal from environmental sounds. Although
our results show CI users perform similarly to NHL, previous pro-
tocols used a two-alternative forced choice paradigm involving
much shorter stimuli. In the present study sounds were 2e3 s long
and participants could listen multiple times such that identifying
the sounds was likely easier.

Dim 1 coordinates are also correlated to the RMS within the
frequency band centered at 150 Hz, which overlaps the range of
human voice fundamental frequencies. The highest values for RMS
at 150 Hz are seen for FEM and MALE and therefore give further
evidence that Dim 1 is related to the perception of vocal sounds. Of
course the human voice is also special due to its importance for
social communication (Belin et al., 2004) such that most humans
hear speech frequently in their everyday lives and are highly
familiar with it. In addition speech and other vocal sounds are
produced by a single unique source, the human vocal tract, which
reduces the variability of spectra compared to environmental and
musical sounds. Such particularity might confer to vocal sounds a
specific familiarity feature set used to build-up perceptual strate-
gies and leading to more efficient recognition (Kidd et al., 2007).
Finally with regards to CI users most research is conducted with the
aim of improving speech perception such that implants are
designed to deal better with vocal rather than musical or envi-
ronmental sounds.

4.3. Dimension 2 e pitch and periodicity cues

Dimension 2 contrasts the musical and environmental sounds
for both NHL and CI users. Values are also correlated with the Max
Pitch Salience and Autocorrelation peak, suggesting an importance
of specific spectral-temporal information in discriminating these
sounds. Similar results have also been found by Gygi et al. (2007)
and Inverso and Limb (2010), whilst Reddy et al. (2009)
concluded that the categorization of environmental sounds was
linked to the variation in rate of spectral dynamics. High values of
pitch salience correspond to slowly changing spectral cues
(Terhardt et al., 1982) and may therefore be more easily perceived
by CI users who normally perform poorly in pitch related tasks
(Pressnitzer, 2005; Geurts andWouters, 2001; Marx et al., 2014). CI
users also retain a certain amount of musical perception when
presented with simple rhythms of notes (Lassaletta et al., 2008;
Looi et al., 2008). Musical sounds with temporal movement and a
sense of melody may therefore have a stronger sense of musicality
than singular tones. This may explainwhy the violin, guitar and bell
sounds are grouped together separately from the oboe and xylo-
phone. In addition difficulties in timbre perception (Inverso and
Limb, 2010) and increased causal uncertainty may contribute to
the categorization of the oboe and xylophone as environmental
sounds. Finally Reed and Delhorne (2005) reported a link between
temporal and spectral cues used for both speech and environ-
mental sound perception. Although Dim 2 is linked with certain
spectro-temporal variables there is no correlation to the speech
perception scores of the CI users (Table 1) suggesting that different
spectro-temporal information may be important for speech and
environmental sound perception. This would suggest that although
the perceptual differences originate from low level processing
abilities, the effect of higher order cognitive processes cannot be
dismissed (Shafiro et al., 2011).

4.4. Variability of categorization in CI users

One of the main differences between participant groups is the
larger variability and looser segregation of categories produced by
CI users. This suggests a greater diversity of categorization strate-
gies are being used, as revealed by Fig. 4. A likely contributor to this
is the variability in CI users listening experience, which plays an
important role in the identification of sounds (Ballas, 1993).
Although only experienced post-lingually deaf CI users were
included in the testing, their familiarity with different sounds may
vary greatly due to differences in the duration of deafness, the level
of rehabilitation and everyday listening. Further, none of the speech
performance scores were correlated to Dim 1 or Dim 2 suggesting
that additional cognitive factors such as a decline in the cognitive
abilities of participants may also contribute to the variability of
results (see Gygi and Shafiro, 2013).



E. Collett et al. / Hearing Research 335 (2016) 207e219218
Our previous work aimed at speech perception in CI users
highlighted the impact of brain plasticity before and after implan-
tation on the outcomes of a cochlear implantation (Strelnikov et al.,
2010; Lazard et al., 2014). For example, the temporal brain area
which is specifically involved in human voice processing (see Belin
et al., 2000, 2002) is weakly activated in CI users (Coez et al., 2007)
probably because this area is involved in processing visual speech
information during deafness (Rouger et al., 2012), a cross modal
reorganization that negatively impacts on recovery through the
cochlear implant (Strelnikov et al., 2013). Concerning the brain
network specifically involved in environmental sound recognition
(see Lewis et al., 2011; Lewis, 2005; Giraud and Price, 2001), there is
no indication how a prolonged period of deafness may alter the
functional integrity and recovery via the cochlear implant. How-
ever the possibility of a deleterious functional reorganization of this
network should be envisaged as an important factor influencing
sound categorization.

4.5. Methodological considerations

Using a Free-Sorting Task and a combination of MCA and HCPC
analysis, our results provide evidence that CI users present cate-
gorization strategies that are muchmore similar to NHL thanwould
be expected. However, results may not entirely reflect the abilities
of CI users to discriminate natural sounds in real-world environ-
ments. Firstly our conclusion is based on a restricted choice of 16
sounds that belong to 3 predefined categories (environmental,
musical and vocal). The limited number of stimuli was chosen such
that the FST could be completed in a short time frame and not be
fatiguing for the elderly CI users. It was therefore difficult to
represent all environmental, musical and vocal sounds that exist in
everyday life. Using only three categories may also have made it
easier for CI users to produce results that resembled those of NHL.
Testing more sounds in a FST would also be possible but would
however take a longer amount of time and constitute a higher
cognitive load, especially for CI participants. Apart from testing
more sounds another goal of future testing would be to increase the
diversity of the auditory categories to be studied. For instance no
examples of animal vocalizations have been used and results also
show that categories of linguistic, non-linguistic and transport/
mechanical sounds likely exist. Secondly the FST was chosen over
other methods of data collection in order to minimize the
complexity of the test protocol. However in a recent comparative
article on methods of categorical data collection, Giordano et al.
(2010) shows that in comparison to hierarchical sorting and simi-
larity ratings the results of FST have low reliability (repeatability)
when applied to different groups of participants. It is also claimed
that FST is inaccurate in representing the raw performance of in-
dividuals. Further the use of MDS models may not cover all of the
variance present in the data and may hide some of the similarities
and differences between NHL and CI users. In order to strengthen
our conclusions we present converging results using complemen-
tary methods HCPC and the more in-depth MCA. Whilst HCPC is
able to display the overall categories in a simple manner MCA al-
lows us to more precisely interpret categorization strategies as well
as the agreement of participants to said strategies. Raw co-
occurrence (similarity) matrices were also used to perform a
model-free analysis. Again, this revealed performance values
comparable between NHL and CI users and supports our conclu-
sions. Finally the results of categorization accuracy and identifica-
tion have highlighted that the sound BELwas categorized as amusic
sound. In contrast this sound was originally considered by the re-
searchers to belong to the category of environmental sounds as
church bells are often heard outside as part of a complex sound
environment. This is an important example to remember when
considering the possible sounds and predefined categories to be
used in future testing. Finally when measuring the identification of
sounds there are many different paradigms that can be used and
which may not entirely reflect the identification abilities of lis-
teners in a FST. In the case where descriptions of sounds have been
judged, the results also depend on the interpretation of the ex-
perimenter(s) and the consistent use of the same evaluation
criteria.

5. Conclusions

This study has demonstrated that in a Free Sorting Task, CI users
and NHL built-up three categories of sounds which matched our
predefined choice of musical, environmental and vocal sounds.
Performance of NHL and CI users showed similarities in the accu-
racy and strategy of categorization as well as subtle differences
concerning CI users' ability to categorize certain sounds. It is most
likely that these differences are a result of CI users' limitations in
auditory perception and a poorer ability to identify the sound
source. Our results are in line with the general theory that sounds
are categorized primarily based on semantic information associ-
ated with the sound source and that qualitative information related
to the acoustic signal become important only when source identi-
fication fails. In analyzing the categorization strategies used by
participants the importance of vocal sounds has been identified.
Acoustic analysis has also highlighted specific spectral and tem-
poral variables, notably the pitch salience and the mean autocor-
relation peak value, which are important for the perception and
categorization of the sixteen common sounds used in this study.
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