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Abstract—Repeating spatiotemporal spike patterns exist

and carry information. How this information is extracted by

downstream neurons is unclear. Here we theoretically inves-

tigate to what extent a single cell could detect a given spike

pattern and what the optimal parameters to do so are, in par-

ticular the membrane time constant s. Using a leaky

integrate-and-fire (LIF) neuron with homogeneous Poisson

input, we computed this optimum analytically. We found

that a relatively small s (at most a few tens of ms) is usually

optimal, even when the pattern is much longer. This is

somewhat counter-intuitive as the resulting detector

ignores most of the pattern, due to its fast memory decay.

Next, we wondered if spike-timing-dependent plasticity

(STDP) could enable a neuron to reach the theoretical opti-

mum. We simulated a LIF equipped with additive STDP,

and repeatedly exposed it to a given input spike pattern.

As in previous studies, the LIF progressively became selec-

tive to the repeating pattern with no supervision, even when

the pattern was embedded in Poisson activity. Here we show

that, using certain STDP parameters, the resulting pattern

detector is optimal. These mechanisms may explain how

humans learn repeating sensory sequences. Long

sequences could be recognized thanks to coincidence

detectors working at a much shorter timescale. This is con-

sistent with the fact that recognition is still possible if a

sound sequence is compressed, played backward, or

scrambled using 10-ms bins. Coincidence detection is a

simple yet powerful mechanism, which could be the main

function of neurons in the brain.
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INTRODUCTION

Electrophysiologists report the existence of repeating

spike sequence involving multiple cells, also called

‘‘spatiotemporal spike patterns”, with precision in the

millisecond range, both in vitro and in vivo, lasting from

a few tens of ms to several seconds (Tiesinga et al.,

2008). In sensory systems, different stimuli evoke differ-

ent spike patterns (also called ‘‘packets”) (Luczak et al.,

2015). In other words, the spike patterns contain informa-

tion about the stimulus. How this information is extracted

by downstream neurons is unclear. Can it be done by

neurons only one synapse away from the recorded neu-

rons? Or are multiple integration steps needed? Can it

be done by simple coincidence detector neurons, or

should other temporal features, such as spike ranks, be

taken into account? Here we wondered how far we can

go with the simplest scenario: the readout is done by sim-

ple coincidence detector neurons only one synapse away

from the neurons involved in the repeating pattern. We

demonstrate that this approach can lead to very robust

pattern detectors, provided that the membrane time con-

stants are relatively short, possibly much shorter than

the pattern duration.

In addition, it is known that mere repeated exposure to

meaningless sensory sequences facilitates their

recognition afterward, in the visual (Gold et al., 2014)

and auditory modalities (Agus et al., 2010; Andrillon

et al., 2015; Viswanathan et al., 2016) (see also contribu-

tions in this special issue), even when the subjects were

unaware of these repetitions. Thus, an unsupervised

learning mechanism must be at work. It could be the so

called spike-timing-dependent plasticity (STDP). Indeed,

some theoretical studies by us and others have shown

that neurons equipped with STDP can become selective

to arbitrary repeating spike patterns, even without super-

vision (Masquelier et al., 2008, 2009; Gilson et al., 2011;

Humble et al., 2012; Hunzinger et al., 2012; Klampfl and

Maass, 2013; Kasabov et al., 2013; Nessler et al., 2013;

Krunglevicius, 2015; Yger et al., 2015; Sun et al., 2016).

Using numerical simulations, we show here that the

resulting detectors can be close to the theoretical

optimum.
FORMAL DESCRIPTION OF THE PROBLEM

We assess the problem of detecting a spatiotemporal

spike pattern with a single LIF neuron. Intuitively, one

should connect the LIF to the neurons that are

particularly active during the pattern, or during a
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subsection of it. That way, the LIF will tend to be more

activated by the pattern than by some other input. More

formally, we note L the pattern duration, N the number

of neurons it involves. We call Strategy #n the strategy

which consists in connecting the LIF to the M neurons

that emit at least n spike(s) during a certain time

window Dt 6 L of the pattern. Strategy #1 is illustrated

on Fig. 1.

We hypothesize that all afferent neurons fire

according to an homogeneous Poisson process with

rate f, both inside and outside the pattern. That is the

pattern corresponds to one realization of the Poisson

process, which can be repeated (this is sometimes

referred to a ‘‘frozen noise”). To model jitter, at each

repetition a random time lag is added to each spike,

drawn from a uniform distribution over ½�T;T� (a normal

distribution is more often used, but it would not allow

analytical treatment, see next section).
Fig. 1. Detecting a spike pattern with a LIF neuron. (Top) Raster plot

of N ¼ 10
4
neurons firing according to an homogeneous Poisson

process. A pattern of duration L can be repeated (frozen noise). Here

we illustrated Strategy #1, which consists in connecting the LIF to all

neurons that fire at least once during a certain time window of the

pattern, with duration Dt 6 L. These neurons emit red spikes. Of

course they also fire outside of the Dt window. (Bottom) Typically the

LIF’s potential will be particularly high when integrating the spikes of

the Dt window, much higher than with random Poisson’s inputs, and

we want to optimize this difference, or more precisely the signal-to-

noise ratio (SNR, see text).
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We also assume that synapses are instantaneous (i.e.

excitatory postsynaptic currents are made of Diracs),

which facilitates the analytic calculations.

For now we ignore the LIF threshold, and we want to

optimize its signal-to-noise ratio (SNR), defined as:

SNR ¼ Vmax � Vnoise

rnoise

; ð1Þ

where Vmax is the maximal potential reached during the

pattern presentation, Vnoise is the mean value for the

potential with Poisson input (noise period), and rnoise its

standard deviation (see Fig. 1).

A THEORETICAL OPTIMUM

Deriving the SNR analytically

We now want to calculate the SNR analytically. In this

section, we assume unitary synaptic weights. Since the

LIF has instantaneous synapses, and the input spikes

are generated with a Poisson process, we have

Vnoise ¼ sfM and rnoise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sfM=2

p
, where s is the

membrane’s time constant (Burkitt, 2006). We assume

that sfM � 1 (large number of synaptic inputs), so that

the distribution of V is approximately Gaussian (Burkitt,

2006). Otherwise it would be positively skewed, thus a

high SNR as defined by Eq. (1) would not guarantee a

low false alarm rate.

The number of selected afferents M depends on the

strategy n. The probability that an afferent fires k times

in the Dt window is given by the Poisson probability

mass function: Pðk spikesÞ ¼ kke�k

k!
, with k ¼ fDt. The

probability that an afferent fires at least n times is thus

1� e�k
Pn�1

k¼0
kk

k!
, and finally, on average:

M ¼ N 1� e�k
Xn�1

k¼0

kk

k!

 !
: ð2Þ

We now need to estimate Vmax. Intuitively, during the

Dt window, the effective input spike rate, which we call

r, is typically higher than fM, because we deliberately

chose the most active afferents. For example, using

Strategy #1 with Dt ¼ 10 ms ensures that this rate is at

least 100 Hz per afferent, even if f is only a few Hz.

More formally, Strategy #n discards the afferents that

emit fewer than n spikes. This means on average the

number of discarded spikes is Ne�kPn�1

k¼0
kkk

k!
¼

Ne�kPn�1

k¼1
kk

ðk�1Þ! ¼ Ne�kk
Pn�1

k¼1
kk�1

ðk�1Þ! ¼ Ne�kk
Pn�2

k¼0
kk

k!
. Thus

on average:

r ¼ N=Dt k� e�kk
Xn�2

k¼0

kk

k!

 !
¼ Nf 1� e�k

Xn�2

k¼0

kk

k!

 !
: ð3Þ

We note V1 ¼ sr the mean potential of the steady

regime that would be reached if Dt was infinite. We now

want to compute the transient response. The LIF with

instantaneous synapses and unitary synaptic weights

obeys the following differential equation:

sdV
dt

¼ �Vþ s
X
i

dðt� tiÞ; ð4Þ
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where ti are the presynaptic spike times. We first make the

approximation of continuity, and replace the sum of Diracs

by an equivalent firing rate RðtÞ:

sdV
dt

¼ �Vþ sRðtÞ: ð5Þ

RðtÞ should be computed on a time bin which is much

smaller than s, but yet contains many spikes, to avoid

discretization effects. In other words, this approximation

of continuity is only valid for a large number of spikes in

the integration window, that is if rs � 1, which for

Strategy #1 leads to Nfs� 1.

Note that RðtÞ ¼ fM during the noise period, and

RðtÞ ¼ r during the Dt window (in the absence of jitter).

At this point it is convenient to introduce the reduced

variable vðtÞ ¼ VðtÞ�Vnoise

V1�Vnoise

, which obeys the following

differential equation:

sdv
dt

¼ �vþ iðtÞ; ð6Þ

where iðtÞ ¼ RðtÞ�fM

r�fM
is the dimensionless input current, such

as i ¼ 0 during the noise period (when the input spike rate

is fM), and i ¼ 1 when the input spike rate is r).
Without jitter, iðtÞ would be a simple step function,

equals to 1 during the Dt window, and 0 elsewhere.

Adding jitter, however, turns iðtÞ into a trapezoidal
T  t

h=
1

t
1

t
2

t
3

h=
 t 

/ 2
T

t
1

t
2

t
3

Fig. 2. Jittering the spike pattern. (Top) Raster plots for the M
selected afferents. x-Axis is time, and y-axis is spike number

(arbitrary, so we order them in increasing added jitter, which is a

random variable uniformly distributed over ½�T;T�). Dashed (resp.

solid) lines corresponds to the boundaries of the raster plot before

(resp. after) adding jitter. The left (resp. right) panel illustrates the

Dt > 2T case (resp. Dt < 2T). (Bottom) We plotted the corresponding

spike time histograms, or, equivalently, doing the approximation

of continuity, iðtÞ. One can easily compute t1 ¼ t3 ¼
minðDt; 2TÞ; t2 ¼ jDt� 2Tj, and h ¼ minð1;Dt=2TÞ. One can check

that the trapezoidal area is Dt whatever T (jittering does not add nor

remove spikes).
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function, which can be calculated (see Fig. 2). Now that

iðtÞ is known, one can compute vðtÞ by integrating Eq. (6).

The response of the LIF to an arbitrary current iðtÞ is
(Tuckwell, 1988):

vðtÞ ¼ v0e
�t=s þ 1=s

Z t

0

e�ðt�sÞ=siðsÞ ds: ð7Þ

With i ¼ atþ b, and given that a primitive of tet is tet � et,

the integral can be computed exactly:

vðtÞ ¼ aþ bðt� sÞ þ ðv0 � aþ bsÞe�t=s: ð8Þ
Note that another jitter distribution than uniform (e.g.

normal), would not lead to a piece-wise linear function

for iðtÞ, and thus would typically not permit exact

integration like here.

As illustrated on Fig. 3, one can use Eq. (8) to

compute successively v1 ¼ vðt1Þ; v2 ¼ vðt1 þ t2Þ:

v1 ¼ t1 þ sðe�t1=s � 1Þ
2T

; ð9Þ

v2 ¼ hþ ðv1 � hÞe�t2=s: ð10Þ
One can now compute vðtÞ for t1 þ t2 < t < t1 þ t2 þ t3:

vðtþ t1 þ t2Þ ¼ h� t� s
2T

þ v2 � h� s
2T

� �
e�t=s; ð11Þ

and differentiate it:

dvðtþ t1 þ t2Þ
dt

¼ � 1

2T
þ 1

2T
� v2 � h

s

� �
e�t=s: ð12Þ

This derivative is 0, indicating that v is maximal, for

tmax ¼ s log 1þ 2T
h� v2
s

� �
: ð13Þ

One can check that vmax ¼ h� tmax

2T
which means that the

maximum is on the trapezoid edge, which is logical:

before the crossing i > v, so v increases; after the

crossing i < v, so v decreases. Plugging the tmax value

into Eq. (11), and expliciting all variables, we have:

vmax ¼ min 1;
Dt
2T

� �
� s
2T

log 1� e�maxðDt;2TÞ=s þ e�jDt�2Tj=s� �
:

ð14Þ
One can check that if T � s and T � Dt, then

vmax � 1� e�Dt=s, which is the classical response of a LIF

to a step current.

From the definition of v : Vmax � Vnoise ¼
vmaxðV1 � VnoiseÞ. We now have everything we need to

compute the signal-to-noise ratio:

SNR ¼ vmax

V1 � Vnoise

rnoise

¼ vmaxe
�k kn�1

ðn� 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sNf

1� e�k
Pn�1

k¼0
kk

k!

s
:

ð15Þ
Numerical validation

We verified the exact Eq. (15) through numerical

simulations. We used a clock-based approach, and

integrated Eq. (4) using the forward Euler method with a

0.1-ms time bin. We generated 100 random Poisson

patterns of duration L ¼ 20 ms, involving N ¼ 10
4
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neurons with rate f ¼ 5 Hz. We chose Dt ¼ L ¼ 20 ms, i.e.

the LIF was connected to all the afferents that emitted at

least n spikes during the whole pattern, n being the

strategy number (the constraint sfM � 1 imposes here

n 6 2). In order to estimate Vmax, each pattern was

presented 1000 times, every 400 ms. Between pattern

presentations, the afferents fired according to a Poisson

process, still with rate f ¼ 5 Hz, which allowed to

estimate Vnoise and rnoise. We could thus compute the

SNR from Eq. (1) (and its standard deviation across the

100 patterns), which, as can be seen on Fig. 4,

matches very well the theoretical values for a broad

range of jitters, and for strategies 1 and 2.

Optimizing the SNR

We now want to optimize the SNR given by Eq. (15). We

consider that f and T are external variables, and that we

have the freedom to choose the strategy number n; s
and Dt. We also add the constraint sfM P 10 (large

number of synaptic inputs). We assume that L is

sufficiently large so that an upper bound for Dt is not

needed. We used the Matlab R2015b Optimization

Toolbox (MathWorks Inc., Natick, MA, USA) to compute

the optimum numerically.

Fig. 5 illustrates the results. One can make the

following observations:

� Strategy #1 is usually the best for f and T in the biolog-

ical ranges (see below), while higher numbers are opti-

mal for very large f and T (see panel A). This means

that emitting a single spike is already a significant

event, that should not be ignored. We will come back

to this point in the discussion.

� Unsurprisingly, optimal s and Dt typically have the

same order of magnitude (Dt being slightly larger,

see panel C). Unless T is high (>10 ms), or f is low
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(<1 Hz), then these timescales should be relatively

small (at most a few tens of ms). This means that even

a long pattern (hundreds of ms or above) is optimally

detected by a coincidence detector working at a

shorter timescale. This could explain the apparent

paradox between typical ecological stimulus durations

(hundreds of ms or above) and the neuronal integration

timescales (at most a few tens of ms).

� The constraint sfM P 10 imposes larger s when both f
and T are small (panel B, lower left). In the other cases,

it is naturally satisfied.

� Unsurprisingly, the optimal SNR decreases with T.
What is more surprising, is that it also decreases with

f. In other words, sparse activity is preferable. We will

come back to this point in the discussion.

What is the biological range for f and T? It is worth

mentioning that f is probably largely overestimated in

the electrophysiological literature, because the

technique totally ignores the cells that do not fire.

Furthermore, experimentalists tend to select the most

responsive cells, and search for stimuli that elicit strong
l spatiotemporal spike pattern detection by single coincidence detector
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responses. Mean firing rates, averaged across time and

cells, could be smaller than 1 Hz (Shoham et al., 2006).

But obviously some cells strongly respond to some stim-

uli. The frozen Poisson noise model captures this variabil-

ity. For example, with L ¼ 100 ms, f ¼ 3:2 Hz and

N ¼ 10
4
(values used in the next section), leading to

k ¼ 0:32 expected spikes per cell, on average the pattern

will elicit 0 spike in 7261 cells, 1 spike (10 Hz) in 2324

cells, 2 spikes (20 Hz) in 372 cells, 3 spikes (30 Hz) in

40 cells, and 4 spikes (40 Hz) in 3 cells.

T corresponds to the spike time precision. Millisecond

precision in cortex has been reported (Kayser et al., 2010;

Panzeri and Diamond, 2010; Havenith et al., 2011). We

are aware that other studies found poorer precision, but

this could be due to uncontrolled variable or the use of

inappropriate reference times (Masquelier, 2013).

We now focus, as an example, on the point on the

middle of the T	 f plane, whose parameters are

gathered in Table 1. The resulting SNR is very high

(about 80). In other words, it is possible to choose a
Table 1. Numerical parameters. First two

lines correspond to external parameters, the

rest of them are parameters to optimize.

Parameter Value

T 3.2 ms

f 3.2 Hz

Optimal s 18 ms

Optimal Dt 23 ms

Optimal n 1
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threshold for the LIF which will be

reached when the pattern is

presented, but hardly ever in the

noise periods.

In the next section, we

investigated, through numerical

simulations, if STDP can find this

optimum. More specifically, since

STDP does not adjust s, we set it to

the optimal value in Table 1 and

investigated whether STDP could

lead to the optimal n and Dt.
SIMULATIONS SHOW THAT
STDP CAN BE CLOSE-TO-

OPTIMAL

Set-up

The set up we used was similar to the

one of our previous studies

(Masquelier et al., 2008; Gilson

et al., 2011). We simulated a LIF neu-

ron connected to all of the N ¼ 10
4

afferents with plastic synaptic weights

wi 2 ½0; 1�, obeying the following dif-

ferential equation:

s
dV

dt
¼ �Vþ s

X
i;j

wiðtijÞdðt� tijÞ; ð16Þ
Initial synaptic weights were all equal. Then these

synaptic weights evolved in ½0; 1� with additive, all-to-all

spike STDP like in Song et al. (2000). Yet we only mod-

eled the Long-Term Potentiation (LTP) part of STDP,

ignoring its Long-Term Depression (LTD) term. Here

LTD was modeled by a simple homeostatic term

wout < 0, which is added to each synaptic weight at each

postsynaptic spike (Kempter et al., 1999). Note that using

a spike-timing-dependent LTD, could also lead to the

detection of a repeating pattern, as demonstrated in our

earlier studies (Masquelier et al., 2008, 2009), but less

robustly, because it is more difficult to depress the

synapses corresponding to afferents that do not spike in

the repeating pattern.

As in Song et al. (2000), at each synapse i, we intro-

duce the trace of presynaptic spikes Ai
pre, which obeys

the following differential equation:

spre
dAi

pre

dt
¼ �Ai

pre: ð17Þ

Furthermore:

� At each presynaptic spike: Ai
pre ! Ai

pre þ dApre.

� At each postsynaptic spike: wi ! wi þ Ai
pre þ wout for

i ¼ 1; . . . ;N, then the weights are clipped in [0,1].

We used dApre ¼ 0:01 and spre ¼ 20 ms, while wout and

the LIF threshold h were systematically varied (see

below). The refractory period was ignored for simplicity.

We used a clock-based approach, and integrated Eqs.

(16) and (17) using the forward Euler method with a 0.1-
ttern detection by single coincidence detector
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ms time bin. The Matlab code for these simulations has

been made available in ModelDB (Hines et al., 2004) at

https://senselab.med.yale.edu/modeldb/.

We now describe the way the input spikes were

generated. Between pattern presentations, the input

spikes were generated randomly with a homogeneous

Poisson process with rate f (see Table 1). The spike

pattern with duration L ¼ 100 ms was generated only

once using the same Poisson process (frozen noise).

The pattern presentations occurred every 400 ms (in

previous studies, we demonstrated that irregular

intervals did not matter (Masquelier et al., 2008; Gilson

et al., 2011), so here regular intervals were used for sim-

plicity). At each pattern presentation, all the spike times

were shifted independently by some random jitters uni-

formly distributed over ½�T;T� (see Table 1).
Results: two optimal modes

The theory developed in the previous sections ignored the

LIF threshold (a difference of unconstrained potential was

maximized). But in the simulations, one needs a threshold

to have postsynaptic spikes, necessary for STDP. Since

we did not know which threshold values h could lead to

the optimal Dt, we performed an exhaustive search over

threshold values, using a geometric progression with a

1.1 ratio. Note that (from Eq. (16)) the threshold h can

be interpreted as the number of synchronous

presynaptic spikes needed to reach the threshold from
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corresponding synaptic weight for each neuron: blue for low weight, purple

uniform (we used 0.68 for Neuron #1 and 0.47 for Neuron #2, in order to hav

neuron. (Middle) During learning. Selectivity emerges at t � 5 s, after � 12

leading to suboptimal SNR. (Bottom) After convergence. For both neurons, S

once in a � 23 ms long window, located at the beginning of the pattern. This re

each time the pattern is presented. Elsewhere both Vnoise and rnoise are law,
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the resting potential if these spikes arrive through

maximally reinforced synapses ðw ¼ 1Þ.
We also used a geometric progression with a 1.1 ratio

to search for wout. This parameter tunes the strength of

the LTD relative to the LTP, and thus influences the

number of reinforced synapses after convergence. For

each h	 wout point, 100 simulations were performed

with different random patterns, and computed the

proportion p of ‘‘optimal” ones (see below for the

definition).

The initial weights were computed such that

Vnoise ¼ hþ 2rnoise (leading to an initial firing rate of

about 20 Hz, see Fig. 6 top). After 500 pattern

presentations, the synaptic weights converged by

saturation. That is synapses were either completely

depressed ðw ¼ 0Þ, or maximally reinforced ðw ¼ 1Þ, as
usual with additive STDP (Song et al., 2000; van

Rossum et al., 2000; Gütig et al., 2003). A simulation

was considered optimal if the reinforced synapses did cor-

respond to a set of afferents which fired at least once

(Strategy #1) in a subsection of the pattern, whose dura-

tion had to match the optimal Dt window of the pattern

given in Table 1 (with a 10% margin). In practice this sub-

section typically corresponded to the beginning of the pat-

tern, because STDP tracks back through the pattern

(Masquelier et al., 2008; Gilson et al., 2011), but this is

irrelevant here.

We found two optimal modes (see Fig. 6). The first

one, with a high threshold ðh ¼ 370Þ and strong LTD
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rate modes #1 and #2 respectively. (Top) Initial state. On the left, we

s indicate pattern presentations. Next, we represented the weights

plotted the spike pattern, coloring the spikes as a function of the

for intermediate weight, and red for high weight. Initial weights were

e Vnoise ¼ hþ 2rnoise). We also plotted the weight histogram for each

pattern presentations. Yet the weights still have intermediate values,

TDP has concentrated the weights on the afferents which fire at least

sults in 1 and 2 postsynaptic spikes for Neuron #1 and #2 respectively

resulting in optimal SNR.
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(wout ¼ �3:5	 10
�3
) led to 1 postsynaptic spike at each

pattern presentation (as in our previous studies

(Masquelier et al., 2008, 2009; Gilson et al., 2011)). For

this mode, p ¼ 51%. The second mode, with a lower

threshold ðh ¼ 250Þ and weaker LTD ðwout ¼ �1:6 10�3Þ
led to 2 postsynaptic spikes at each pattern presentation,

and p ¼ 87% (the lower threshold increases the probabil-

ity of false alarms during the noise period, but this prob-

lem could be solved by requiring two consecutive spikes

for pattern detection). Fig. 6 illustrates an optimal simula-

tion for both modes. We conclude that for most patterns,

STDP can turn the LIF neuron into an optimal, or close-to-

optimal pattern detector.

Detection is optimal only after convergence (i.e.

weight binarization), which takes time (about 500

pattern presentations). This is because the learning rate

we used is weak (dApre ¼ 0:01, in other words, the

maximal weight increase caused by one pair of pre- and

post-synaptic spike is only 1% of the maximal weight),

as in other theoretical studies and in accordance with

experimental measurements (Song et al., 2000;

Masquelier et al., 2008, 2009; Yger et al., 2015). Using

a higher rate, it is possible to converge faster, at the

expense of the robustness. For example with

dApre ¼ 0:02, convergence occurs in � 250 pattern pre-

sentations, but p decreases to 44% and 80% for modes

#1 and #2 respectively. In any case, it is worth mentioning

that (suboptimal) selectivity emerges way before conver-

gence (e.g. around t � 5 s, or � 12 pattern presentations

in Fig. 6).

Critically, for successful learning the pattern

presentation rate must be high in the early phase of

learning, before selectivity emerges. For example

presenting the pattern every 800 ms instead of 400 ms

leads to p ¼ 33% and 43% for modes #1 and #2

respectively. Once selectivity has emerged, this rate has

much less impact, since the neuron tends to fire (and

thus changes its weights) only at pattern presentations,

whatever the intervals between them.
DISCUSSION

One of the main result of this study is that even a long

pattern (hundreds of ms or above) is optimally detected

by a coincidence detector working at a shorter timescale

(tens of ms), and which thus ignores most of the

pattern. One could have thought that using s � L, to

integrate all the spikes from the pattern would be the

best strategy. Instead, it is more optimal to use a

subpattern as the signature for the whole pattern (see

Fig. 5).

We also demonstrated that STDP can find the optimal

signature in an unsupervised manner, by mere pattern

repetitions. Note that the problem that STDP solves

here is similar to the one addressed by the Tempotron

(Gütig and Sompolinsky, 2006), which finds the best spike

coincidence to separate two (classes of) patterns, by

emitting or not a postsynaptic spike. Recently, the frame-

work has been extended to fire more than one spike per

pattern (Gütig, 2016), like here (e.g. Neuron #2 in

Fig. 6). Yet these mechanisms require supervision.
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In this work we only considered single-cell readout.

But of course in the brain, it is likely that a population of

cells is involved, and these cells could learn different

subpatterns (lateral inhibition could encourage them to

do so (Masquelier et al., 2009)). If each cell is selective

to a subpart of the repeating pattern, how can one make

a full pattern detector? One solution is to use one down-

stream neuron with appropriate delay lines (Carr and

Konishi, 1988). Specifically, the conduction delays should

compensate for the differences of latencies, so that the

downstream neuron receives the input spikes simultane-

ously if and only if the sub-patterns are presented in the

correct order. Another solution would be to convert the

spatiotemporal firing pattern into a spatial one, using neu-

ronal chains with delays as suggested by Tank and

Hopfield (1987). Such a spatial pattern – a set of simulta-

neously active neurons – can then be learned by one

downstream neuron equipped with STDP, and fully con-

nected to the neuronal chains, as demonstrated in

Larson et al. (2010).

It is also conceivable that the whole pattern is

detected based on the mere number of subpattern

detectors’ spikes, ignoring their times. Two studies in

the human auditory system are consistent with this idea:

after learning meaningless white noise sounds,

recognition is still possible if the sounds are compressed

or played backward (Agus et al., 2010), or chopped into

10-ms bins that are then played in random order

(Viswanathan et al., 2016).

Our theoretical study suggests that synchrony is an

important part of the neural code (Stanley et al., 2012),

that it is computationally efficient (Gütig and

Sompolinsky, 2006; Brette, 2012), and that coincidence

detection is the main function of neurons (Abeles, 1982;

König et al., 1996). In line with this proposal, neurons

in vivo appear to be mainly fluctuation-driven, not mean-

driven (Brette, 2012, 2015). It remains unclear if other

spike time aspects such as ranks (Thorpe and Gautrais,

1998) also matter.

Our results show that, somewhat surprisingly, lower

firing rates lead to better signal-to-noise ratio. This could

explain why average firing rates are so low in brain,

possibly smaller than 1 Hz (Shoham et al., 2006). It

seems like neurons only fire when they need to signal

an important event, and that every spike matters (Wolfe

et al., 2010).
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