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Functional coordination of muscles 
underlying changes in behavioural 
dynamics
Carlijn A. Vernooij1, Guillaume Rao1, Dionysios Perdikis2,3, Raoul Huys2, Viktor K. Jirsa2 &  
Jean-Jacques Temprado1

The dynamical systems approach addresses Bernstein’s degrees of freedom problem by assuming 
that the neuro-musculo-skeletal system transiently assembles and dismantles its components into 
functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical 
point of view about the functioning of the muscular sub-system in this process. To investigate the 
interaction between the dynamical organisation at muscular and behavioural levels, we searched for 
specific signatures of a phase transition in muscular coordination when a transition is displayed at the 
behavioural level. Our results provide evidence that, during Fitts’ task when behaviour switches to a 
different dynamical regime, muscular activation displays typical signatures of a phase transition; a 
reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle 
activation. This suggests that consistent changes occur in coordination processes across the different 
levels of description (i.e., behaviour and muscles). Specifically, in Fitts’ task, target size acts as a control 
parameter that induces a destabilisation and a reorganisation of coordination patterns at different 
levels of the neuro-musculo-skeletal system.

The hypothesis that movement production relies on the emergence of coordinative structures in which the 
individual components (e.g. neurons, muscles, joints, limbs) are grouped together as functional units1 has been 
widely echoed in the neuroscience community, notably by the proponents of the dynamical systems approach2,3. 
In this perspective, it is considered that the human neuro-musculo-skeletal system (NMSS) has the capacity of 
transiently assembling and dismantling its components into functional units (or synergies, modes, etc.) to (self-) 
organise into regimes to meet different task demands2,3. As an illustration, this approach allowed identifying pat-
tern formation, at behavioural level, in a wide number of task paradigms, including Fitts’ task e.g.4–6.

In Fitts’ task, participants are instructed to move as fast as possible between two targets with width W and 
inter-target distance D7. Varying W and/or D changes task difficulty, which can be quantified by the index of 
difficulty8
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When increasing task ID by decreasing W, a phase transition is observed at the behavioural level5: the dynamical 
regime changes from a limit cycle (expressed by continuous movements) to fixed points (expressed by discrete 
movements per half-cycle). This phase transition has been demonstrated by phase flow analyses4,5, which have 
indicated the presence of fixed points at higher IDs only (see9 for a different method to identify phase transi-
tions in Fitts’ task). Higher IDs are also associated with a modified endpoint kinematic pattern, as revealed by a 
decreased acceleration-to-deceleration ratio6. A phase transition in behavioural dynamics is a key signature of 
different control mechanisms which is assumed to express, at behavioural level, the coordination across multiple 
elements in the NMSS, including muscles.

However, while there has been much debate about whether the muscular subsystem matters for coordina-
tion dynamics, the question of how the muscles are coordinated has received only limited attention from the 
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dynamical system perspective (see10,11 for notable exceptions). This is surprising as so far it is not clear whether 
and how muscular coordination patterns change during behavioural phase transitions. Neither is it known 
whether, depending on the type of processes that mediate the coupling between muscles, any coordination pat-
tern at the muscular level can be identified through the analysis of electromyography (EMG: measure of the 
‘neural input command to the muscles’). Together with the unquestionably complex and non-linear link between 
muscle activations and muscle forces12–15, the presence of muscular redundancy (i.e., more muscles than degrees 
of freedom at the joints) leads to an impossibility to directly relate EMG to endpoint kinematics. Thus, it is not 
obvious whether any dynamical (re)organisation of muscles can be captured by EMG or for instance by recording 
muscle force (the ‘mechanical output’). As it is currently still impossible to measure in vivo individual muscle 
forces (though see e.g.16 for advancements in estimations), EMG recordings will be the sole candidate examined 
in the present study. To our knowledge, only two studies17,18 have measured EMG in Fitts’ task. Whereas they 
mainly focussed on co-contraction, their results indicated a potential for reorganisation of muscular coordination 
with increasing accuracy constraints.

Here, we study how the muscular system behaves during a transition between qualitatively distinct dynamical 
regimes in behaviour observed in Fitts’ task. Our general assumption was that a behavioural phase transition 
between dynamical regimes expresses underlying coordination processes within and between the different levels 
of the whole NMSS. Accordingly, our approach consists of identifying the general phenomena of coordination 
and revealing their underlying implementation level by level, that is, in the present study, at behavioural and 
muscular levels. In the framework of coordination dynamics, typical signatures accompany a phase transition2,3, 
namely: i) a reorganisation of the system from one low dimensional coordinative pattern to another, ii) critical 
fluctuations expressed as a marked increase in variability of the system’s behaviour before transition, which is 
indicative of a loss of stability of the current coordination pattern, and a decrease in variability after the transition, 
indicating a higher stability of coordination after switching to the new pattern. Here, we study whether these 
typical signatures are displayed at muscular level when a phase transition between different dynamical regimes in 
behaviour occur during Fitts’ task19–21.

To capture a reorganisation in muscular coordinative patterns and critical fluctuations, we implemented and 
adopted methods from fields outside of the dynamical systems approach. There are several techniques to extract 
muscular coordinative patterns, often called ‘muscle synergies’ (e.g. non-negative matrix factorization, inde-
pendent component analysis, factor analysis), which all have specific underlying assumptions and constraints. 
Nevertheless, they have been shown to lead to similar results for the weighting and the temporal components of 
the muscular coordinative patterns22. To enable a detailed view of the reorganisation process we adopted a similar 
approach as De Marchis et al.23, where non-negative coordination patterns are extracted per small time-bin of 
EMG data which are clustered together thereafter. In this context, we define a synergy in line with the dynam-
ical systems approach24 as a temporal functional coordination pattern that can evolve during the realization of 
the task. To measure critical fluctuations, we used functional connectivity dynamics (FCD) analysis, which was 
previously utilised for fMRI data25. This method was developed to address the unsatisfying assumption that 
the functional connectivity (FC) in the brain (i.e., among BOLD activations at different brain areas) is constant 
throughout a multiple minutes recording session26. Here, we applied it to EMG data to study whether muscu-
lar activations show a peak in their coordination variability in parallel to a phase transition in behaviour. Such 
increase in variability would be considered as a typical signature (among other signs) of a phase transition at the 
muscular level.

We tested the following predictions. First, we expected to observe an increase in FCD variability in muscular 
coordination at the vicinity of the phase transition between behavioural dynamical regimes and a lower FCD 
variability of muscular coordination both before and after the behavioural transition, revealed by the phase flow 
analysis. Second, we expected to observe a different coordination of muscular activation patterns associated with 
the different behavioural dynamical regimes. This could express itself as either a change in the number of the 
synergies and/or a change in the nature of such synergy patterns. Alternatively, we could expect any reorganisa-
tion during Fitts’ task to express itself as an alternate activation of a fixed repertoire of synergies, as comparable 
movements with different task constraints as well as transitions in gait have shown to be produced by an alternate 
organisation of a set repertoire of synergies27–31.

Results
Identification of change in behavioural dynamical regimes. We reconstructed the dynamical vector 
fields for the behavioural profiles during our reciprocal, unimanual Fitts’ task (Fig. 1A), where the maximal angle 
between neighbouring vectors (θmax) indicates whether a fixed point (θmax ~180°) or a limit cycle (θmax ≪  180°) 
controls the movement. When ID was low, θmax was low also (<10°). With higher ID, θmax showed a rather sharp 
transition to ~180°. The inflection point of the sigmoidal relationship of θmax over ID was located at 4.9 ±  0.60 
bits (Fig. 1B). The inflection point of the phase flows was presumably paralleled by changed kinematics. MT, AT 
and DT per half-cycle (~aiming movement) increased monotonously with ID (F2.96,124.41 =  3169.32, η 2 =  0.99; 
F4,168 =  1906.51, η 2 =  0.98; F2.49,104.44 =  2570.02, η 2 =  0.98; respectively. All p <  0.001). Post hoc analyses showed 
that all IDs were significantly different from each other for all three variables. We found a breakpoint in the 
AT/DT ratio close to ID 5.1 (at ID =  5.14 bits) mirroring the inflection point in the phase flow. After this ID, the 
AT/DT ratio was decreased. See supplement for Figure S1 and further details on the kinematics.

Quantification of variability through Functional Connectivity Dynamics analysis. The average 
muscular activation patterns per ID are shown in Fig. 2. There is a clear difference in EMG activity between IDs. 
Specifically, the activations are larger and smoother with lower IDs. For higher IDs, muscular activations are less 
pronounced in general. Additionally, some difference in the phasing of muscular activations can be noted. While 
unable to test it, a change in the shape of activation between IDs is shown in many muscles. For instance, DeltA 
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shows an anticipatory activation for ID 3.3 to start the forward motion, which starts ~50% cycle, whereas its acti-
vation starts increasing not until after 50% cycle for ID 6.0 and ID 6.9.

Muscular activation of twelve upper limb and shoulder muscles were recorded and a measure of the variability 
in their coordination pattern was calculated (see Methods for a list of the recorded muscle). To study variability in 
muscular coordination patterns, we applied Functional Connectivity Dynamics (FCD) analyses to recorded EMG 
signals. The median jump length (JLD) of the FCD showed that there were larger fluctuations in correlational 
patterns among muscles at the ID where behaviour shows a transition between limit cycle and fixed point regimes 
(inverted U-shape modulation, see Fig. 3). At the transition, consistently larger jumps in muscular coordination, 
as quantified via pairwise correlations, were shown compared to away from the transition (F2.96,162.94 =  11.31, 
η2 =  0.17, p <  0.001). Post hoc analyses showed that the average JLD for ID 5.1 was significantly larger than for 
other IDs (all p <  0.001). Additionally, the average JLD for ID 4.2 and 6.0 were significantly larger than for ID 3.3 
and 6.9 (all p <  0.001).

Figure 1. (A) Reconstructed angle diagrams as a function of ID averaged across participants. The horizontal 
axes represent normalized position (x); the vertical axes normalized velocity (y). The colour coding (right 
side of the panel) represents the maximum angle in degrees between adjacent vectors. Red areas indicate the 
existence of locally opposing angles and imply the presence of a fixed point. Its absence implies the existence of 
a limit cycle. (B) The maximum angle in degrees between adjacent vectors as a function of ID averaged across 
participants (θmax). The horizontal axis represents ID; the vertical θmax (degrees).

Figure 2. EMG activations per muscle averaged over all subjects for each condition. 
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Identification of muscle synergies. Two to seven muscle synergies (W) were extracted per two-cycle bin 
to account for a minimum of 90% of variance in the EMG data of the twelve muscles we recorded. With higher 
IDs, increasingly more W were extracted (mean ±  std per bin: 3.12 ±  0.66, 3.43 ±  0.72, 3.60 ±  0.86, 3.72 ±  0.96, 
3.85 ±  0.90, respectively, F3.31,3237.48 =  200,79, η 2 =  0.17, p <  0.001, all post hoc pairwise p <  0.001). The cluster 
analysis on Sammon’s map values classified seven clusters per ID. Except for cluster 6, all Wcluster, which represent 
the general activation pattern within a cluster, were comparable between IDs (Fig. 4, see Methods for abbrevia-
tions of muscles). Each Wcluster has a different relative activation of muscles, and a few strongly activated muscles 
i.e. DeltA and Pect in cluster 1; TriLat, DeltA, DeltM and Pect in cluster 2; BicSho, TriLat and DeltM in cluster 
3; Pron, Brach, BicSho, TriLat, DeltM and DeltP in cluster 4; DeltM in cluster 5; Pron, TriLo, TerMaj and Pect in 
cluster 6; and DeltP in cluster 7. Most muscles are activated in multiple Wcluster and most Wcluster activate multiple 
muscles. Note that due to our extraction of synergies per 2-cycle bin and the subsequent clustering method, 
error-bars in Fig. 4 represent a combination of between-subject and within-subject variability. Although based 
on this information the consistency across participants cannot be estimated, this does give some indication of the 
variability in the synergies extracted in general.

As Wcluster were rather similar across IDs, they were averaged over ID to form basis synergies (Wbasis, Fig. 5). 
These Wbasis (Fig. 5A) and their associated temporal activation profiles H (Fig. 5B) are able to reconstruct the 
average EMG signals presented in Fig. 2 rather well. In Fig. 5E, the average EMG signals from Fig. 2 are replotted, 
with the reconstructed EMG based on the synergy analysis superimposed. There is a good resemblance between 
the two signals, indicated by their small differences for the different muscles (Fig. 5E).

To examine differences in the muscular coordination patterns over IDs, we examined how the Wbasis were 
employed. The results suggest a difference in recruitment of Wbasis per ID (Fig. 5C), for instance Wbasis 2 and Wbasis 
7 appear to be most selected when ID is high or low, whereas selection of Wbasis 3 shows the inverse and Wbasis 5 
is used increasingly more with higher IDs. Additionally, PCAsyn analyses on the temporal activation profiles H 
(Fig. 5B) showed that the score of the first component explained most of the variance between IDs: 65.4%, 62.6%, 
72.7%, 83.0%, and 79.1%, for increasing IDs respectively. Scores of PCAsyn components two to seven explained 
less than 30% of variance and were similar per ID (see Fig. 5D for PCAsyn scores of the first and second compo-
nents). This first component gradually varied with higher IDs, especially around the target approach (40–50% 
and 90–100% of cycle). A correlation of scores of the first PCAsyn components was calculated to provide us with a 
measure of similarity between temporal activations between IDs. We applied a bootstrapping analysis with 1000 
samples per pair of IDs to assess the robustness of the correlation. The analysis showed that the scores for ID 3.3, 
ID 4.2 and ID 5.1 were significantly correlated (all p <  0.001) and the scores for ID 5.1, ID 6.0 and ID 6.9 were 
significantly correlated (all p <  0.001). Scores of ID 3.3 and ID 4.2 were not significantly correlated to those of ID 
6.0 and ID 6.9 (all p >  0.05, average p =  0.55). Pearson’s correlations of scores of the second PCAsyn components 
were all significant (all p <  0.001), indicating its lack in explaining any difference between IDs. Note that again no 
information about group-level statistics can be assessed here due to our methodology (see above).

Discussion
The present study aimed to explore the dynamical organisation existing between behavioural and muscular levels 
in Fitts’ task. More specifically, it aimed to determine whether, when the behaviour switches from one dynamical 
regime (limit-cycle) to another (fixed point), coordination of muscular activations also displays specific signa-
tures of a dynamical phase transition, i.e. a reorganisation of muscular coordination and a loss of stability of mus-
cular coordination at the vicinity of the behavioural phase transition. We directed changes in behavioural regime 
by manipulating accuracy constraints and tracked the concomitant muscular activations of 12 arm and shoulder 
muscles by surface EMG. We devised methods to analyse the dynamical coordination and variability of the mus-
cular patterns, based on which we showed two necessary conditions of a phase transition at muscular level. To our 
knowledge, in spite of a number of debates about “whether muscles matter in phase transitions” during the last 

Figure 3. (A) Example of an FCD matrix. (B) Jump length distribution (JLD) curve of the FCD per ID across 
participants. P <  0.05. Error bars denote 1 standard deviation. Different letters above each error bar indicate 
significantly different groups.
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decade (for instance see10,11), it is the first (successful) attempt demonstrate that the muscular system follows the 
general principles of pattern formation in complex nonlinear systems.

As a prerequisite, we demonstrated the typical changes in the dynamical regime of behaviour when the target 
width decreased, thereby confirming target size acts as a control parameter of behavioural transition in Fitts’ 
task4–6,9. This was illustrated in the present study by the analysis of both phase flow trajectories and kinematics 
(see supplementary material). Taken together, the analyses indicated a transition from a limit cycle to a fixed 
point regime at ID ~4.9 and 5.14 bits for kinematics and phase flow respectively (see Fig. 1B). These results extend 
previous findings in Fitts’ task to a multijoint movement of the upper-limb performed in the anterior-posterior 
direction.

Matching this transition in behaviour with the analyses carried out on EMG data (Functional Connectivity 
Dynamics (FCD) and muscle synergies), we found two typical signatures accompanying a phase transition.

First, the phase transition in behaviour was accompanied, at the muscular level, by a peak in variability of 
coordination patterns. This conclusion was supported by the results of FCD analysis of muscle activations data. 
By tracking the overall changes in correlation between muscular activations during a trial, a proxy of variability 
was obtained25. Results showed an increased switching (related to FCD’s jump length) between functional correla-
tions in parallel to the behavioural transition from limit cycle to fixed point regime (Fig. 3). After the behavioural 
transition, variability in correlational profiles was lower and the value at ID 6.9 was close to the value at ID 3.3. 
Thus, the general profile of functional connectivity dynamics observed over the different IDs reflected stability, 
loss of stability and re-stabilisation of muscular coordination before, during, and after the transition, respectively. 
This observation mimics critical fluctuations classically observed during a phase transition in numerous complex, 
nonlinear dynamical systems, including brain and behaviour32. These results might indicate that during a specific 
behavioural regimes (be it limit cycle or fixed point) a smaller set of the dynamical repertoire was used by the 
muscular system, while around the behavioural transition a larger part of this space was visited25. In other words, 
the ‘exploration’ was considerably lower during specific behavioural regimes than around the behavioural transi-
tion. This interpretation is consistent with the prediction that around the transition, the neuro-muscular system 
is in a metastable regime, which leads to random exploration of the different coordination states20.

Second, synergy analysis suggested that the altered variability of muscular activations captured by the FCD 
corresponded to a change in the temporal activations of muscular coordination patterns. Strikingly, the synergy 
analysis33–36 per 2-cycle bin suggested that a reorganisation of muscular coordination occurs by the assembly of 
seven similar muscle synergies for all IDs, adjusted in their temporal activation per ID (Fig. 4). This indicates 

Figure 4. Synergy activation coefficients (+STD) extracted by NNMF as a function of ID averaged per 
cluster. Per synergy, the normalised activity of each of the twelve muscles is represented. Each muscle is 
activated in multiple synergies. Higher bars indicate increased strength of activity.
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that the movement in the forward-backward direction strongly constrains (or even over-determines) the nature 
and number of muscular patterns itself, while target size induces dynamical changes in their organisation (which 
is consistent with its status of control parameter at behavioural level, see4–6). This consistency of Wbasis between 
conditions or with different task constraints has been shown in many papers, e.g. see the papers of d’Avella et al. 
on fast-reaching movements and reaching in different directions30,31). To examine differences in the nature of the 
synergy activation, we looked into differences in the quantity of activation per ID and differences in the temporal 
activation H.

Interestingly, the PCAsyn on H showed that IDs can be separated based on the score of the first PCAsyn only 
(Fig. 5D). As time-dependent activation profiles (H) for high IDs were not similar to the profiles for low IDs, it 
strongly suggests there is a distinction in temporal activation of the synergies between high and low IDs. This 
can be interpreted as a reorganisation of muscular coordination patterns, which occurs at ID 5.1 in parallel to 
the phase transition in dynamical regime seen in behaviour. These changes in time-dependent activation profiles 
during a transition in movement are comparable to what was recently found by Hagio et al.27 and by Ivanenko and 
colleagues28,29 who studied muscle synergies during gait transitions. These authors found the transition between 
walking and running not to be caused by different synergies (Wbasis), but by the regulation of the time-dependent 
activation profiles (H) of specific synergies. This strongly suggests that the production of transitions between two 
dynamical regimes behaviour require a reorganisation of muscular coordination patterns in the form of a change 
in the phasing of synergies. This change in the phasing would not be seen in the presence of a mere change in 
activation within a certain regime. A simple parametrisation of the variables would be represented by a simple 
adjustment in the amplitude and/or time duration of the temporal activation of the synergies. This would imply 
an increased activation or a longer activation of the synergy, respectively, without changing the timing (nature) 

Figure 5. (A) Synergy activation coefficients from Fig. 4 averaged per cluster (Wbasis). Per basis synergy, the 
normalised activity of each of the twelve muscles is represented. Higher bars indicate increased strength of 
activity. (B) Average temporal activation components over a movement cycle per basis synergy per ID. Darker 
colours represent lower IDs. (C) Normalised frequency of use of the basis synergies per ID. (D) First and second 
PCAsynscores on the temporal activations H of panel B. The first PCAsyn score shows a clear difference between 
the activations of the IDs, activations with significant correlations (p <  0.001) are grouped by letters A and B, 
whereas the second PCAsyn score does not (all activations are correlated with all others). (E) Reconstructed 
EMG signals based on the synergies presented in A and B for ID 3.3, ID 5.1 and ID 6.9. The average EMG 
signals from Fig. 2 are superimposed for comparison.
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of the activation. However, as we normalised our data in size and amplitude to enable comparisons, these simple 
modifications are not shown in our data. In contradiction, the change in phasing of the synergies–i.e. the changed 
shape of the temporal activation patterns H–that we find when comparing IDs implies that the synergies are dif-
ferently used. This signifies the presence of a reorganisation in activation patterns.

The differences in muscular activations over IDs could also be explained by the fact that each synergy has a 
specific function and is, depending on ID, more or less frequently activated (Fig. 5C). For instance, Wbasis 3, which 
denotes cocontraction between biceps and triceps, is increasingly more often used around the phase transition in 
behaviour. Such co-contraction, presumably corresponding to a freezing of the degrees of freedom, is usual for 
tasks where there is variable control1.Wbasis 2 and Wbasis 7 represent the main forward and backward movement 
of the upper limb, respectively. These synergies are most often used for high and low IDs, indicating that these 
principal movements were less routinely used during the transition between dynamical regimes. This could imply 
that the solution space of movements is explored more extensively, leading to less typical movements. Together, 
the changes in temporal activations H and the use of the synergies over IDs show predictable changes in how the 
repertoire of synergies is organised to comply to task demands. This interpretation extends the framework of 
coordination dynamics to the muscular level.

In summary, our results show three typical signatures of a phase transition at the muscular level: an increased 
variability towards the transition ID, lower variability after the behavioural transition, and a reorganisation of 
muscular coordination patterns corresponding to limit cycle and fixed point regimes, respectively. This set of 
convergent observations makes the existence of a phase transition at muscular level very likely. However, formally, 
since we grasped neither the order parameter nor the topology of the state space of the muscular system, we 
cannot categorically assert that such a phase transition indeed exists. We did show, though, that when behaviour 
shows a phase transition in Fitts task, muscular coordination reorganises accordingly. This is a first step and a 
strong indication that consistent changes in coordination processes exist across behavioural and muscular levels.

During the synergy extraction and selection (the NNMF procedure), we determine the number of synergies 
by taking the least number of synergies that account for at least 90% of the EMG signal. Therefore, here we dis-
card 0% up to 10% of the information captured by the EMG signal, thus keeping 90–100% of the information. 
These synergies are then clustered per ID and averaged. The temporal activation patterns associated with these 
basic synergies then are subjected to the PCA analysis. The first component of this latter analysis explains 65.4%, 
62.6%, 72.7%, 83.0%, and 79.1% of the temporal activation patterns with higher IDs, respectively. Including the 
second component would increase this to 94.3%, 92.2%, 87.9%, 91.6%, and 92.3%, respectively. Therefore, the 
PCA analysis gives a reliable representation of the original data given in the new Fig. 2. Importantly, by reducing 
the dimensionality of the data, the NNMF and PCA analysis reveal significant information about the muscular 
coordination that cannot be captured by classically analysing the original EMG data (Fig. 2). NNMF has been 
shown to be a very valuable method to obtain the muscular coordination patterns inherent to the ensemble of 
muscular activation signals. Combined with the PCA analysis, we gained a single variable that clearly shows a 
muscular reorganisation and that might indicate a phase transition if combined with other variables.

Whether this reorganisation of muscular patterns is abrupt or progressive can be debated. At first sight, some 
of our data (e.g. the existence of an intermediate point in jump length; Fig. 3) could be interpreted as indicative 
of a progressive reorganisation of muscular patterns, instead of a discrete transition. We contend, however, that 
this hypothesis is unlikely and can be due to our processing methods. We measured subjects’ performance at five 
specific IDs. The transition was always included in our range of IDs and the transition most often happened at the 
ID 5.1. However, some transition might have happened at higher or lower IDs (4.1 or 6.0 bits), thereby influenc-
ing, on average, our outcome measures. In support of this hypothesis, a comparable pattern of results was shown 
by Kelso and colleagues, who measured the phase difference between two fingers with increasing frequency in 
bimanual coordination32. Specifically, the existence of an intermediate point suggested some gradualness in the 
change of relative phase (see Fig. 2 in32). This point was not considered, however, by Kelso et al. (i.e., it was 
regarded as an artefact). Instead, they argued in favour of an abrupt phase transition at behavioural level (i.e., 
over a half cycle), which corresponded to the patterns empirically observed37. Thus, what appears to be a gradual 
change in our figures does not argue against the existence of discrete transitions.

It is interesting to note that the question of how the muscles are coordinated in the neuro-musculo-skeletal 
system has received only limited attention from the dynamical system approach (exceptions are10,11). Our find-
ings suggest that the muscular sublevel reorganises as a complex dynamical system. Even if never conceptualised 
as such in the literature (to our best knowledge), this is not totally surprising as the muscular interface between 
brain and behaviour is inherently complex and non-linear. As an illustration, the nervous system has to deal with 
mastering numerous degrees of freedom to generate muscular coordination patterns (i.e., activation of a huge 
number of motor units, reduction of muscular redundancy). In addition, muscles are thixotropic38,39 and the rela-
tionship between muscle activation from the nervous system (measured by EMG) and joint kinematics (produced 
by the sum of all the muscle forces around the joint) holds curvilinear relationships with respect to fibre length, 
movement velocity, firing frequency of motor units, and moment arm of the tendon, e.g.12,13. It is unknown 
whether any pattern at the muscular level found in EMG will also be present in muscle force. As it is currently 
impossible to measure in vivo individual muscle forces (though see e.g.16 for advancements in estimations),  
it is still to be determined whether a dynamical organisation also exists at the level of muscle forces. As a dynam-
ical coupling exists at the level of behaviour, one can expect that it should be also the case at the level of the coor-
dination between forces.

In conclusion, in the present study, our general hypothesis was that the transition between behavioural 
dynamical regimes expresses consistent changes in coordination processes across the different levels of descrip-
tion (i.e. brain, behaviour, and muscular). By analysing the organisation of muscular coordination during a tran-
sition in behavioural dynamical regimes, we explored the dynamics at muscular level and its relation with the 
behavioural level.
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Our results confirmed that, in Fitts’ task, target size may be considered as a control parameter that induces 
a destabilisation and a reorganisation of coordination patterns at different levels of the NMSS, including the 
muscular level. Indeed, according to our hypothesis, our data showed that when behaviour undergoes a phase 
transition to a different dynamical regime (corresponding to a different mode of movement control4), muscular 
coordination also displays some classical signatures of a phase transition (i.e., a reorganisation in coordination 
patterns and a concomitant increase and decrease in the variability of muscular activations around and beyond 
a critical ID, respectively). Importantly, the present study shows that the dynamical organisation of the muscular 
subsystem can be captured by analysing EMG data. These findings are striking due to the inherently complex and 
nonlinear relationship between muscular activation and behaviour. They suggest that muscular organisation is 
functionally linked to brain and behavioural organisation and follows general principles of pattern formation in 
complex, nonlinear systems2,3.

Methods
Experimental setup and design. Fourteen right-handed healthy volunteers (age mean ±  std 23.2 ±  2.0 
years, 8 male) completed the experiment. None of them suffered from known neurological or muscular disor-
ders. Volunteers were asked to refrain from exercise and the consumption of alcohol 12 hours before participa-
tion (confirmed by questionnaire). All signed an informed consent form before the start of the experiment. The 
experimental protocol was approved by a local ethics committee of Aix-Marseille Université and was carried out 
in accordance with the Declaration of Helsinki.

Participants’ task was to slide a stylus in an anterior-posterior direction upon a graphical tablet between two tar-
gets of varying sizes. There were five conditions (A =  20 cm, ID equally spread between 3.3 to 6.9 bits) of 40 move-
ment cycles (i.e., 80 aiming movements). Each condition was repeated four times. Repeats were blocked per ID 
and IDs were randomly ordered. This is similar to4, whereas an important difference is that an anterior-posterior 
movement was used to produce a multijoint motion to engage more muscles while realising the task.

Positional tablet data were sampled at 250 Hz. During each trial, surface EMG was recorded at 1925 Hz with a 
Trigno Wireless EMG system (Delsys Inc, USA) from the belly of the following twelve muscles (/parts): brachiora-
dialis (BR), pronator teres (Pron), biceps brachii short head (BicSho), biceps brachii long head (BicLo), brachialis 
(Brach), triceps lateral head (TriLat), triceps long head (TriLo), pectoralis (Pect), deltoid anterior (DeltA), del-
toid medialis (DeltM), deltoid posterior (DeltP), and teres major (TerM). Cohesive bandages (Lastopress 7 cm ×  
1.5 m, Hartmann Group, Germany) provided extra support for the electrodes. Before and after the experiment, 
participants executed maximal voluntary contractions of pushing or pulling a vertical pole in an anterior and 
posterior direction respectively (three repeats, lasting ~5 seconds each with 2 min rest in between) while ver-
bally encouraged. Further analysis was carried out offline using custom written MATLAB scripts (Mathworks 
MATLAB 2012b, USA).

Kinematical analyses. Positional data were resampled to 100 Hz, partitioned in cycles based on rever-
sal points of the stylus position and the data of each trial’s first three and last two cycles were removed. For 
the remaining 70 half-cycles, we calculated the movement time (MT), the acceleration time (AT) and decel-
eration time (DT), which were pooled over participants. The effect of ID on MT, AT, and DT were analysed 
using a repeated measures ANOVA with ID as within-subject factor and α  =  0.05. Where necessary, the 
Greenhouse-Geisser adjustment was applied to correct for violations of sphericity. Significant effects were sub-
jected to a Student t-test with Bonferroni corrections to test for differences between IDs.

Phase flow analyses. To verify the appearance of a limit cycle or fixed point regime per ID, vector field and 
phase flow analyses on the position and velocity time-series was reconstructed. These methods are widely used in 
the literature. The underlying concepts and methods of these analyses were described in detail by Van Mourik and 
colleagues40 and by Friedrich and Peinke41,42. A vector field reconstruction separates the deterministic compo-
nents of the system dynamics from the random, or stochastic, components. The time evolution of a deterministic 
process of biological motion is often under the impact of random (i.e. stochastic) fluctuations. These components 
can be referred to as the diffusion and drift components, respectively. They can be separated via computation of 
its conditional probability matrix P(x, y, t|xo, yo, to), indicating the probability of the system to be at state (x, y) at 
time t when knowing the current state (xo,yo) at time step to. To focus on the dynamics’ deterministic (i.e. the drift) 
component, we computed the conditional probability matrix of our position x(t) and velocity y(t) time-series over 
a 99 ×  99 equally bin-sized grid for each trial. Per bin, the deterministic components were calculated as:

τ
τ= ′ − ′ ′ + ′ ′

τ →
∬D x y x x P x y t x y t dx dy( , ) lim 1 ( ) ( , , , , ) (2)x

0

and

τ
τ= ′ − ′ ′ + ′ ′

τ →
∬D x y y y P x y t x y t dx dy( , ) lim 1 ( ) ( , , , , ) (3)y

0

These deterministic components numerically specify the system’s vector field in the phase space. Therefore, 
the components reconstruct the flow that unambiguously determines the dynamical regime of the system. For 
each bin, we calculated the angle θ between neighbouring velocity vectors for the first two deterministic com-
ponents (i.e., position and velocity). The maximum angle (θmax) was determined to test for the existence of fixed 
points (θmax ~180°) or limit cycle (θmax ≪  180°). A sigmoid was fitted through the data points of θmax as a function 
of ID according to
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θ =
+ +e

1
1 (4)a b IDmax ( )

and the point of inflection identified the transition between the regimes.

Functional Connectivity Dynamics. We used and adapted functional connectivity dynamics (FCD) anal-
ysis, which was previously utilised for fMRI data25, to study inter-trial variability in EMG data. First, the EMG 
data of each muscle separately was normalised in size according to its peak value recorded during the maxi-
mal voluntary contractions. The normalised EMG was cut per cycle based on positional data, band-pass filtered 
between 10 and 450 Hz (2nd order Butterworth dual-pass filter), rectified and low-pass filtered at 5 Hz (4th order 
Butterworth dual-pass filter). The EMG data per cycle were then resampled by interpolation to Np/c =  100 time 
points. For every participant, ID, and repetition we correlated the EMG signals of all recorded muscles over a 
two cycle sliding window (e.g. 200 time points; Matlab function corr with option ‘coef ’, full overlap between win-
dows). Consequently, this resulted in 3300 symmetrical Nm × Nm (muscle-by-muscle) FC matrices, which each 
contain the correlations amongst all muscles at a specific time window. We subsequently correlated consecutive 
FC matrices to finally obtain a symmetrical Nt × Nt(time-by-time, Nt =  3299) functional connectivity dynamics 
(FCD) matrix showing changes in correlations over the trial (see Fig. 3A for an example FCD). We then converted 
the FCD to a “jump length” matrix by subtracting the matrix from 1 (1 minus FCD). A jump length is the correla-
tional distance of the functional connectivity dynamics between consecutive time windows. Jump length matrices 
were concatenated over the four repetitions.

To numerically quantify the amount of variability per ID, we calculated the median jump length size. We 
used the 204th diagonal of the jump length matrices, which is the first diagonal which does not include over-
lap between windows and thus does not comprise autocorrelation, and calculated the median jump length over 
this diagonal. This jump length distribution (JLD) captures the statistics of the muscular coordination patterns’ 
fluctuations, therefore representing a measure of the variability of those patterns. The effect of ID on the median 
JLD was tested with a repeated measures ANOVA with ID as within-subject factor and α =  0.05. We used the 
Greenhouse-Geisser adjustment whenever the assumption of sphericity was violated. Significant effects were 
subjected to a Student t-test with Bonferroni corrections to test for differences between IDs.

Synergy extraction. To study any reorganisation in muscular activation patterns, for each participant and 
each ID separately, spatial synergies (W) and associated activation patterns over time (H) were extracted from the 
pre-processed EMG signal per bin of 2 movement cycles (i.e., Np =  200 points) cf.23. Following DeMarchis and 
colleagues (2013), we applied the method per bins as we hypothesised that the number and selection of synergies 
might not be constant within a trial. For each matrix containing EMG from Nm =  12 muscles over 2 movement 
cycles, non-negative matrix factorisation (NNMF) was applied43. NNMF is an iterative optimisation method that 
minimises the normative error-matrix of

= −E M WH (5)

where M is the Nm × Np matrix of recorded EMG signals, W is an Nm × Ns matrix containing the relative activa-
tions of each of the muscles with Ns being the number of synergies selected for extraction, and H is an Ns × Np/c 
matrix containing the time-varying activity of each synergy. One to ten synergies were extracted for each of the 
Nb =  70 bins per ID and participant, and the NNMF was repeated 100 times for each value of Ns to ensure conver-
gence to the minimum. The number of synergies chosen for further analysis was determined by calculating the 
variance accounted for (VAF) by the reconstruction WxH as:

= ∗




−

−
−






VAF 100 1 norm(M WH)
norm(M mean[M]) (6)

2

2

and by identifying the minimal number of W that could explain at least 90% of the variance of the EMG. W from 
all bins and participants were then normalised to a size of 1 and pooled per ID. Per ID, W were clustered by first 
performing a 2-dimensional Sammon’s mapping44 on the set of W of all bins and all subjects per ID and subse-
quently clustering the resulting Sammon’s map values (MATLAB function clusterdata with ward’s minimum 
variance method). In short, this procedure maps the set of W belonging to a Nm-dimensional space to a set of 
2-dimensional vectors while keeping the structure of the W intact. Using an error minimisation function, which 
contains a 2nd order steepest descent procedure, the Euclidean distance between the W is preserved. This allows 
for a quantification of the number of clusters that underlie the set of synergy-vectors. Three to fifteen clusters were 
calculated for each ID. The minimum number of clusters where the correlation coefficient within each cluster had 
a median value above 0.5 was selected. W were then averaged within each cluster to calculate the representative 
synergies (Wcluster) per ID. To consider changes in the use of Wcluster per ID, we adopted two approaches: 1) the 
number of times each Wcluster was extracted was identified per ID; 2) a principal component analysis (PCAsyn) was 
applied on the concatenated matrix of H per ID. This gave us insight in the use of the synergy-repertoire and the 
variability in the amplitude of each Wcluster over time.

Ethics. The experiment was carried out in accordance with the Declaration of Helsinki and has been approved 
by a local ethics committee.

Data Availability. The article’s supporting data can be accessed online. MATLAB toolbox STABLE: http://
math.bu.edu/people/mveillet/html/alphastablepub.html.
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