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In cognition, common factors play a crucial role. For
example, different types of intelligence are highly
correlated, pointing to a common factor, which is often
called g. One might expect that a similar common factor
would also exist for vision. Surprisingly, no one in the
field has addressed this issue. Here, we provide the first
evidence that there is no common factor for vision. We
tested 40 healthy students’ performance in six basic
visual paradigms: visual acuity, vernier discrimination,
two visual backward masking paradigms, Gabor
detection, and bisection discrimination. One might
expect that performance levels on these tasks would be
highly correlated because some individuals generally
have better vision than others due to superior optics,
better retinal or cortical processing, or enriched visual
experience. However, only four out of 15 correlations
were significant, two of which were nontrivial. These
results cannot be explained by high intraobserver
variability or ceiling effects because test–retest reliability
was high and the variance in our student population is
commensurate with that from other studies with well-
sighted populations. Using a variety of tests (e.g.,
principal components analysis, Bayes theorem, test–
retest reliability), we show the robustness of our null
results. We suggest that neuroplasticity operates during
everyday experience to generate marked individual
differences. Our results apply only to the normally
sighted population (i.e., restricted range sampling). For

the entire population, including those with degenerate
vision, we expect different results.

Introduction

There are many types of intelligence, such as verbal,
spatial, and analytical intelligence, which are all highly
correlated. For example, verbal intelligence shares 64% of
its variability with spatial intelligence (Johnson, Nijen-
huis, & Bouchard, 2008). These correlations are assumed
to reflect a general intelligence factor, often called g.

There are people with eagle-eyed vision and others
with lower visual acuity. Superior vision might be due
to optical, retinal, or cortical factors but also to
differences in visual experiences and attention. For
example, if the eyes’ optics are blurred, all tasks, for
which high-spatial frequency information is important,
are affected to the extent that performance may be
better in all these tasks for some observers than others.
Likewise, differences in the photoreceptor mosaic,
attention, and so on may lead to overall perceptual
differences. Indeed, basic somatosensory tasks are
significantly correlated with each other and, interest-
ingly, even with hearing acuity, likely due to common
genetic factors (Frenzel et al., 2012). Hence, we might
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expect that in vision there is also a strong common
factor leading to high correlations between visual
paradigms. This notion is at the very heart of eye
doctors’ exams where the Snellen eye chart, the
Freiburg Visual Acuity Test (FrACT), and the Early
Treatment of Diabetic Retinopathy Study chart are
assumed to measure general visual acuity and not, for
example, just letter-perception acuity.

On the other hand, experience often leads to very
specialized visual skills. Radiologists, for example, can
detect tumors that are impossible to detect for novices,
and cytologists are experts at searching micrographs
filled with potentially cancerous cells (Evans et al.,
2011). Tennis players show better speed discrimination
than the general population (Overney, Blanke, &
Herzog, 2008). Also in the laboratory, perceptual
learning is usually very specific (but see Aberg,
Tartaglia, & Herzog, 2009; Ahissar & Hochstein, 1997;
Wright & Sabin, 2007; Xiao et al., 2008). For example,
when training improves offset discrimination for a
vertical vernier, there is no transfer to a horizontal
vernier (Fahle & Edelman, 1993; Spang, Grimsen,

Herzog, & Fahle, 2010). The same holds true for most
other visual stimuli such as motion stimuli (Ball &
Sekuler, 1987). Thus, the specificity of perceptual
learning points to no common factor.

Here, we asked the very general question of whether
healthy and well-sighted observers who are good in one
basic visual task are also good in other tasks—that is,
whether there is a common visual factor. Our question is
not about the interobserver variance in each task; rather,
it pertains to whether or not observers vary consistently
across tasks, with some observers being superior and
others inferior in all tasks. We chose six basic visual
paradigms (Figure 1) and correlated performance.

Materials and methods

Participants

Participants were undergraduate students from the
University of Lausanne (Lausanne, Switzerland; n¼40,

Figure 1. The six basic vision paradigms. (A) FrACT: Participants indicated the gap position in a Landolt ring (eight positions). (B)

Vernier offset discrimination: Participants indicated the lower bar’s horizontal offset direction relative to the upper bar (left offset in

this example). (C) Visual backward masking: Observers performed vernier offset discrimination, with the vernier only briefly

presented and subsequently masked for 300 ms. The masking gratings contained either five (BM5) or 25 (BM25) lines.We determined

the ISI between vernier termination and grating onset leading to 75% correct responses. (D) Gabor detection: A vertical Gabor

appeared in either the first or second interval, indicated by the red and green rings, respectively. Observers indicated in which interval

the Gabor was presented. Gabor contrast thresholds for 75% correct responses were determined. (E) Bisection offset discrimination:

Observers indicated whether the central line was offset to the left or right of the interval defined by the two outer lines.
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eight males) who spoke fluent French, with a mean age
of 21.1 years (SD¼ 2.0 years, range¼ 19–27 years).
Participants had normal or corrected-to-normal vision
as determined by the Freiburg visual acuity test (Bach,
1996); that is, all participants reached a value of .0.8
for at least one eye. Thirty-seven observers were right
handed according to a standardized handedness
questionnaire (Oldfield, 1971). All observers were naı̈ve
to the study’s purpose and participated for course
credit or financial compensation. The study was
conducted in accordance with the guidelines of the
declaration of Helsinki. All participants provided
written informed consent prior to participation. As
indicated by self-report, none of the participants had a
previous history of psychiatric or neurological illness.

Apparatus

Verniers and Gabors were presented on a Philips
201B4 Cathode Ray Tube (CRT) monitor (Koninklijke
Philips N.V., Amsterdam, Netherlands) driven by a
10-bit Radeon 9200SE graphics card (AMD, Sunny-
vale, CA). The monitor was linearized by applying a
gamma correction to each color channel individually.
The monitor’s refresh rate was 100 Hz and its spatial
resolution was 1024 · 768 pixels. A viewing distance of
3 m was used in the experiments. The mean luminance
was 45 cd/m2 as determined with a GretagMacbeth
Eye-One display 2 colorimeter (GretagMacbeth, Mu-
nich, Germany).

Bisection stimuli appeared at the center of a
Tektronix 608 display controlled by a computer via fast
16-bit digital-to-analog converters (1 MHz pixel rate;
Tektronix, Beaverton, OR). Line elements comprised
dots drawn with a dot pitch of 200 lm at a dot rate of
1 MHz. The dot pitch was selected to make the dots
slightly overlap; that is, the dot size (or line width) was
of the same magnitude as the dot pitch. Stimuli were
refreshed at 200 Hz. Luminance was 80 cd/m2. The
room was dimly illuminated (0.5 lux), and background
luminance on the screen was below 1 cd/m2. Subjects
observed the stimuli from a distance of 2 m.

Visual paradigms

The basic visual paradigms were administered in the
following order. First we administered the FrACT for
each eye in one block of 24 trials and then the vernier
offset discrimination task. Next, we tested backward
masking with five and 25 elements, in two blocks each,
with the order of the four blocks fully randomized.
Next, in half of the observers we measured Gabor
detection in two blocks followed by bisection thresh-

olds; for the other half of the observers it was the other
way around.

Vernier offset discrimination

Verniers were presented at a distance of 3 m in a
dimly illuminated room. Screen pixels subtended about
18 arcsec at this distance. Verniers were white (100 cd/
m2) on a black background. Verniers consisted of two
vertical bars that were 10 arcmin in length and were
offset in the horizontal direction. The vernier offset
direction was chosen randomly on each trial. Partici-
pants indicated the offset direction of the lower bar
compared with the upper bar (binary task). Errors were
indicated by an auditory signal. In three blocks of 80
trials, we measured vernier offset discrimination
thresholds for the shortest possible vernier duration for
each observer. This was 10 ms for 39 people and 20 ms
for one person. (We first determined vernier offset
discrimination for a duration of 40 ms. All observers
met the predefined criterion—that is, performance was
below 40 arcsec. Then we tested 20 ms and still
everyone did well except for one observer. For further
details see Herzog & Fahle, 1997; Herzog, Kopmann, &
Brand, 2004). The Parametric Estimation by Sequential
Testing (PEST) adaptive staircase procedure was used
to determine the vernier offset yielding 75% correct
responses (Taylor & Creelman, 1967).

Visual backward masking

Vernier duration was 10 ms, as described above
(except for one participant whose vernier duration was
20 ms). We used a vernier offset size of 1.15 arcmin for
all observers. The vernier was followed by a variable
interstimulus interval (ISI; i.e., a blank screen) and then
a grating for 300 ms. The grating consisted of either five
or 25 verniers (referred to as BM5 and BM25,
respectively; BM ¼ backward masking) with zero
horizontal offset that were the same length as the target
vernier. The horizontal distance between grating
elements was about 3.33 arcmin. We varied the ISI
adaptively using a staircase procedure (PEST; Taylor &
Creelman, 1967). We found the ISI target that yields a
performance level of 75% correct responses. (In the
figures, we plot stimulus onset asynchrony (SOA) ¼
vernier durationþ ISI, rather than ISI.) The starting
value of the SOA was 200 ms. Each condition was
tested in two blocks of 80 trials each.

Bisection discrimination task

Bisection stimuli consisted of two vertical lines
delineating a horizontal interval that was 20 arcmin
wide. This interval was bisected into two parts by a
central line. The line lengths were 20 arcmin. On a given
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trial, the central line was slightly displaced in the
direction of one of the two outer lines. The displace-
ment direction was chosen pseudorandomly on each
trial. In a binary task, observers indicated the direction
of the displacement. We measured the 75% correct
bisection thresholds with an adaptive staircase method
(PEST; Taylor & Creelman, 1967) and maximum-
likelihood estimation of the psychometric function’s
parameters.

Each trial was initiated with four markers at the
corners of the screen presented for 500 ms followed by
a blank screen for 200 ms. No fixation point was used
in order to prevent observers from judging the position
of the central element relative to this fixation point’s
remembered location. Next, the bisection stimulus was
presented for 150 ms at the screen’s center. After
stimulus presentation, a blank screen appeared for a
maximum duration of 3000 ms, during which observers
were required to make a response by pressing one of
two buttons indicating the bisector’s offset direction
(right or left). Incorrect responses were followed by an
auditory error signal produced by the computer. A new
trial was initiated 500 ms after the observer gave a
response. Thresholds were determined in two blocks of
80 trials each.

Gabor contrast detection task

We used a two-interval forced-choice contrast
detection task. We measured the Gabor contrast
detection thresholds at which observers reached 75%
correct (two blocks with over 30 trials each) with an
adaptive staircase method (PEST; Taylor & Creelman,

1967) and maximum-likelihood estimation of the
psychometric function parameters.

The Gabor had a spatial frequency of 4 cycles/deg
and appeared either in the first interval within a red
ring or in the second interval within a green ring.
Observers indicated in which interval the Gabor was
presented.

Correlation analysis

We measured the Pearson correlation (r2) between
the mean test values for each participant for each test
pair. Kolmogorov–Smirnov tests indicated that all
behavioral measures and questionnaire scores were
normally distributed. This analysis yielded p-values for
each comparison, which we compared against a
criterion a-level of 0.05 to determine statistical signif-
icance.

Since the traditional frequentist approach of null
hypothesis significance testing can only either reject or
fail to reject the null hypothesis, we turned to a
Bayesian analysis following the approach of Gallistel
(2009) in order to determine the likelihood that the null
hypothesis was true. Here, we directly compared the
probabilities of the null and alternative hypotheses
given the data. In order to make this comparison, we
needed two quantities: P(H0jdata) and P(H1jdata).
These are (1) the probability of the null hypothesis (H0)
given the data and (2) the probability of the alternative
hypotheses (H1) given the data, respectively. Since we
were dealing with regression coefficients, we could
compute t-statistics for each hypothesis
(t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdf � r2Þ=ð1� r2Þ

p
). For the null hypothesis that

Figure 2. For each variable pair, we computed tobs (vertical, dashed black line) for the hypothesis that the slope equals some arbitrary

value (e.g., zero for the null hypothesis). We computed the probability of tobs under the null hypothesis (red curve) and under the

alternative hypotheses (blue curves).

Journal of Vision (2014) 14(8):4, 1–11 Cappe, Clarke, Mohr, & Herzog 4



the slope of the regression line is zero, the corre-
sponding t-statistic is centered on zero with n-2 degrees
of freedom (Figure 2, red curve). For the alternative
hypotheses, the t-statistics may be centered on any
value from negative infinity to positive infinity, again
with n-2 degrees of freedom (Figure 2, blue curves). For
the case of the null hypothesis, the posterior probability
is computed as

PðH0jtobsÞ ¼
PðtobsjH0ÞPðH0Þ

PðtobsÞ
:

For the alternative hypothesis, the posterior proba-
bility is computed as

PðH1jtobsÞ ¼

Z

s6¼0

PðtobsjH1 : l ¼ sÞPðH1 : l ¼ sÞds

PðtobsÞ
:

Setting the priors on the two hypotheses to be equal
[i.e., P(H0)¼P(H1: l¼ s)] and taking the ratio of these
two quantities yields

PðH0jtobsÞ
PðH1jtobsÞ

¼ PðtobsjH0ÞZ

s6¼0

PðtobsjH1 : l ¼ sÞds
:

This is commonly known as the likelihood ratio. The
quantity P(tobsjH0) on the right side may be read directly
off of the graph in Figure 2, from the red horizontal line.
It is given by the value of the t-probability density
function at the observed t-value (tobs). Similarly, the
values of P(tobsjH1: l¼ s) may also be read off the graph
in Figure 2, from the blue horizontal lines. These latter
values are continuously distributed under the noncentral
t-distribution centered on tobs. The integral may be
solved numerically to arbitrary precision by approxi-
mating it with a Riemann sum. If the posterior ratio is
greater than one it implies that the null hypothesis is
more probable given the data, and if it is less than one it
implies that the alternative hypothesis is more probable
given the data. We calculate this quantity for each of our
variable pairs and present the results in Figure 3.

Results

We measured performance on visual acuity (FrACT),
vernier and bisection offset discrimination, visual
backward masking (with five and 25 masking elements),
and Gabor contrast detection (Figure 1, Table 1). We
found significant Pearson correlations in only four out
of the 15 possible task pairs, namely between Gabor
contrast detection and visual acuity, between visual
backward masking with five and 25 grating elements,

between vernier offset and visual backward masking
with five elements, and between vernier offset and
bisection discrimination (Figure 3). All other correla-
tions were nonsignificant (Figure 3). The significant
correlations between vernier offset discrimination and
backward masking and between the two backward
masking tasks were expected because these tasks use the
same vernier target. Thus, only the correlations between
vernier offset and bisection discrimination and between
Gabor detection and visual acuity are interesting.

Power

Our very high number of null results is not due to a
lack of power. With a sample size of 40 participants, we
have sufficient power to detect effects as small as
r2 ¼ 0.07, which, according to Cohen (1988, 1992),
constitutes a medium effect size. In addition, we did not
adjust for multiple comparisons in order to be
conservative because we were testing for null effects.

Using a Bayesian approach, we made inferences
beyond usual hypothesis testing following the proce-
dures of Gallistel (2009). For each comparison, we
compared the probability that the null hypothesis was
true (i.e., no relationship between the variables) in
relation to the probability that the alternative hypoth-
esis was true (see Correlation analysis for details). This
analysis showed that the null hypothesis was more
likely than the alternative hypothesis for all compari-
sons except for the significant cases mentioned above
(shown by the likelihood ratios in Figure 3).

Principal components analysis

Because complex, multivariate relationships cannot
be detected with pair-wise correlations, we conducted a
principal components analysis (PCA). A PCA com-
bines highly correlated variables into one factor. Here,
the highest PCA factor explained only 34% of the total
variance (Figure 4A). For data sets that do have a
common factor, the main one or two factors typically
explain more than 80% of the variance. For our data
set, the main two factors combined explained only
58.6% of the variance; even when including the third
factor they explained only 77.2% of the variance (see
Figure 4A). Taken together, these findings indicate that
there is not a single common factor that can account
for the variations in our data.

Ranks

If subjects who performed well in one condition also
performed well in other conditions, we would expect
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their ranks to be consistent from one test to another. In
the extreme case, we would expect the best observer to
be ranked first in all tests, the second best to be ranked
second in all tests, and so on. On the other hand, if
performing well in one test is unrelated to performance
in another test, then we would expect each observer’s
ranks over tests to roughly average out to the middle
rank (i.e., 20). More than this, we would also expect in

the unrelated case that each observer’s ranks should be

indistinguishable from a simulated observer with

randomly assigned ranks. Figure 5 shows that the

observers’ ranks differ only slightly from a simulated

random observer and that the average rank over

observers is very close to 20. This indicates that while

the ranks are not completely random (we do find some

Figure 3. Scatter plots and Pearson correlation values for each pair of tests. Regression lines (red) are plotted only for those pairs that

were significantly correlated ( p , 0.05). To compare values across the various paradigms, we normalized the data by taking z-scores

(i.e., we subtracted the mean from each value and divided this difference by the standard deviation along each dimension). The

variable r refers to the Pearson correlation, and p is the probability of the null hypothesis that the slope of the regression line is zero.

LR denotes the likelihood ratio of the null to the alternative hypothesis (values greater than one imply support for the null

hypothesis). Diagonal entries (outlined in orange) show test–retest correlations (i.e., correlations between blocks one and two of the

same test). Correlations are high, indicating good test–retest reliability.
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correlations between the tasks) they are very close to
random.

Test–retest reliability

Our null results are not due to poor test–retest
reliability within observers. For the two visual back-
ward masking tasks, the Gabor detection, and the
bisection discrimination task, performance was mea-
sured twice for each observer in two blocks of 80 trials
(Figure 3 shows the average for both blocks). When we
calculated Pearson correlations between performance

levels in the two blocks, we found high and significant
correlations for each paradigm (see Table 2). There was
little intraindividual variability.

In addition to the good test–retest reliability of
BM25 and BM5 individually, performance levels for
these two tests correlated significantly with each other
(r ¼ 0.551). This result is not due to the similarity
between the masking tasks because the subjective
experiences and the corresponding absolute perfor-
mance levels are very different (Herzog & Koch, 2001).
The BM5 mean for the current data is 68 ms (SD¼
27.8) and the BM25 mean is 28 ms (SD¼16.2; Table 1).

Discussion

The main result of our study is the set of amazingly
low correlations between performance levels in the
various basic visual paradigms. Out of 15 possible
correlations, only four were significantly correlated.
Even for the four significant results, the correlation
coefficients r2 were very low, in the range 0.1 to 0.3. The
Pearson correlation quantifies how much variability in
one paradigm is explained by variation in another
paradigm. For example, the significant r2 of 0.11 in

Mean SD

Range

(minimum–maximum)

FrACT 1.35 0.32 0.90–2.25

Gabor 2.75 1.49 0.69–5.38

Bisection 64.35 34.49 22.10–154.45

BM5 68.25 27.72 32.89–159.49

BM25 27.98 16.15 10.00–68.53

Vernier 21.96 12.38 10.10–55.40

Table 1. Mean, standard deviation (SD), and performance range
for the six basic visual tasks.
Performance for the six basic visual tasks

Figure 4. PCA. (A) A PCA combines correlated variables into a single common factor. A factor that is behind many variables has a high

eigenvalue. For example, if there is a single factor that explains the variance of all variables, its eigenvalue is 100%. At the other

extreme, if there are no common factors, all eigenvalues have the same low value. In our case, three of the eigenvalues are around

this lowest value (16.7%) and the remaining eigenvalues are only slightly higher. A common factor usually has an eigenvalue of 80% or

more. Clearly, there is no indication for a common factor behind our six tests. (B) Hinton plot showing the loadings for each visual test

on each factor. Green squares denote positive loadings while red squares denote negative loadings. Square size indicates loading

magnitude.
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Figure 3 indicates that only 11% of the variability in
vernier offset discrimination is explained by variability
in backward masking with five elements, even though
both paradigms required observers to discriminate the
very same vernier offsets. As an extreme case of a
nonsignificant result, performance in the bisection task
has only 0.2% in common with performance in the
BM5 backward masking paradigm. Altogether, corre-
lations are low between all the tasks even though all
paradigms (except the Gabor task) employ a spatial
component.

We expected and found significant correlations
between performance levels in the vernier task and the
BM5 task as well as between the BM5 and BM25 tasks,
likely due to each of these tasks using the vernier target
as the task-relevant stimulus. (There was also a trend
toward a positive correlation between vernier offset
discrimination and BM25.) Besides these ‘‘trivial’’
correlations, only two out of the four remaining
significant correlations are ‘‘interesting’’: the correlation
between Gabor detection and visual acuity (r2¼ 0.15)
and the correlation between bisection and vernier
discrimination (r2¼ 0.13). Both of these correlations are
relatively low compared with, for example, the test–
retest correlations, which were all higher than r2¼ 0.42.

First, as mentioned, our null results cannot be
explained by a lack of power because we can detect
significant differences up to r2¼ 0.07, which according
to Cohen (1988) is a medium effect size. Moreover, we
would have a priori expected the tests to be highly

correlated with r2 much higher than 0.07. Second, a
Bayesian analysis showed that the null hypothesis was
more likely than the alternative hypothesis for each of
the null findings. Third, our null results cannot be
explained by high intraobserver variance because we
found high and significant correlations in test–retest
conditions in the range of r2¼ 0.42 to 0.68 (Table 2). In
addition, BM5 and BM25 are strongly correlated with
an r2 of 0.304. Fourth, a PCA showed that there is no
common multivariate factor behind the tasks. Fifth,
null correlations can occur when unmeasured con-
founding variables correlate positively with one mea-
sured variable and negatively with another. It is in
general impossible to rule out that there is a hidden
cause behind variables. In our case, however, we would
have expected the various vision tests to be directly
correlated because of their basic nature. Sixth, zero
correlations may occur when data are not linearly
related. However, inspection of our data shows that
with few exceptions (e.g., FrACT vs. vernier) the test
pairs were bivariate-normally distributed and did not

Figure 5. Rank analysis. Sorted mean ranks for each subject (circles) are plotted along with the expected mean ranks assuming

complete independence of the ranks on each test (triangles). Error bars denote 61 SE. The dashed line is the expected group average

assuming independence of the ranks. Actual ranks are almost random, but with small deviations resulting from the weak correlations

we observed between tasks.

BM25 BM5 Gabor Bisection

r 0.680284 0.824576 0.699544 0.645619

r
2 0.46279 0.67993 0.48936 0.41682

p 0.000001 ,0.0000001 0.000002 0.000021

Table 2. Pearson correlations between the two repeated
measures for the four visual tests.
Test-re-test correlations

Journal of Vision (2014) 14(8):4, 1–11 Cappe, Clarke, Mohr, & Herzog 8



show any salient nonlinearities. Kolmogorov–Smirnov
tests on the univariate distributions confirmed their
normalcy (vernier: p¼ 0.07; BM5: p¼ 0.25; BM25:
p¼ 0.20; bisection: p¼ 0.28; Gabor: p¼ 0.79; FrACT:
p¼ 0.79). In addition, our results cannot be explained
by outliers. Seventh, we have sufficient variance in our
student data to avoid ceiling effects. The variance in
our student sample is similar to other well-sighted
populations. In the visual acuity test, the mean was 1.35
and SD was 0.32 (Table 1), which is comparable with a
much larger sample of 817 student observers from our
laboratory database (mean¼ 1.31, SD¼ 0.34) and with
138 healthy participants from the general population
who served as age- and education-matched controls in
experiments researching schizophrenia (mean ¼ 1.37,
SD¼ 0.36). Hence, our student sample can be
considered to be representative of the population of
normal, well-sighted or corrected-to-normal observers.

It is surprising that visual acuity (FrACT) correlated
so poorly with performance in the other visual
paradigms. Importantly, however, we do not claim that
there are no correlations between visual acuity tests and
basic visual skills in general. Here, we tested only
observers with good and corrected-to-normal vision
(i.e., observers with values larger than 0.8 in the
FrACT). If we had tested the entire population,
including people with low vision, leading to a full range
of acuity values, there would have been much stronger
correlations. For the entire population the FrACT
correlates very well with other classical eye tests such as
the Early Treatment of Diabetic Retinopathy Study
chart (r2 ¼ 0.92; Kurtenbach, Langrová, Messias,
Zrenner, & Jägle, 2013). Thus, the FrACt can be
considered to be a ‘‘good’’ visual test. For this reason,
we do not doubt the validity of acuity tests. Our null
correlations hold true only in the normal population
with people having average to good visual acuity
(restricted range sampling). Similar considerations hold
true also for vernier acuity and backward masking.
McKee, Levi, and Movshon (2003) investigated visual
acuity and vernier acuity in healthy and amblyopic
observers. Whereas vernier acuity varied strongly with
visual acuity across the entire population, there were no
obvious correlations for the 68 well-sighted observers in
the study (McKee et al., 2003).

Many factors determine visual perception. Among
them are the quality of the eye’s optics, the density of
the retinal photoreceptor array, the quality of encoding
in the primary visual cortex, the ability of higher-level
areas to read out signals from early visual areas,
attention, cognitive factors, and decision making. It
seems likely that superiority in any of these ‘‘unspecific’’
factors leads to superior performance in many tasks,
and this may explain why there are eagle eyes and
average eyes. In light of this, however, it is surprising
that we observed so few significant correlations.

Where do the large differences in these visual tests
come from? We suggest the differences may be
explained by the individual experiences of observers
(assuming there are no innate visual abilities for the
paradigms tested here). We propose that everyday
perceptual learning leads to very specialized skills that
do not transfer to similar paradigms. The situation may
be different for more complex stimuli, for which
transfer has been found. For example, it is surprising
that action video gaming is so much more powerful in
generating transfer in basic visual paradigms such as
Gabor detection than are the visual experiences of
everyday life (Bavelier, Green, Pouget, & Schrater,
2012; Li, Polat, Makous, & Bavelier, 2009; Polat et al.,
2012). The transfer may potentially be explained by the
complex stimuli and by the prolonged, heightened
attention and strong arousal that video gaming brings
about.

An alternative explanation is that hyperacuity tasks,
such as vernier and bisection acuity, involve mainly
cortical processing, while the FrACT and contrast
detection involve mainly retinal-level processing.
However, there is no consensus about the main
processing sites for our visual stimuli and it is very
unlikely that one stimulus is processed at only one of
these two levels. In addition, there are many other
factors that contribute to vision, such as the optical
apparatus, attention, decision making, and so on.
Moreover, bisection acuity and the masked vernier task
(BM5) showed the lowest pair-wise correlation coeffi-
cient (r2¼ 0.002), even though both could be posited as
being more related to cortical processing.

Our results stand in contrast to those of other studies
were high correlations were found between paradigms
that one would naı̈vely imagine being much more
variable than the basic spatial tasks we used. Palmer
and Griscom (2012), for example, asked observers to
rate their preferences for harmony in color and in
musical pieces and found surprisingly high correlations
in the range of 0.6. Similarly, ratings on aesthetics
between emotion and color were in the range of r2 ¼
0.64 (Palmer & Schloss, 2010). Recent studies showed
that intelligence quotient and performance levels on
four different associative memory tasks were all
positively and highly correlated (all r2 . 0.36; Ratcliff,
Thapar, & McKoon, 2011). Interestingly, in the
auditory domain it seems to be that there is a common
factor for basic audition (Kidd, Watson, & Gygi, 2007).

Whereas there are research fields that regularly
observe high correlations between measures, there are
also others that observe very low correlations. In a
recent study, the strength of two illusions (Ponzo and
Ebbinghaus illusions) correlated with V1 surface area
(Schwarzkopf, Song, & Rees, 2011). In this same study,
however, the two illusions did not significantly corre-
late with each other (r2¼0.06, n¼30). In 490 observers,
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it was found that many spatial illusions, including the
Müller-Lyer and Ebbinghaus illusions, do not share a
common spatial factor (Coren & Porac, 1987). Fur-
thermore, people from different cultures seem to
perceive the world differently. For example, the
strength of the Müller-Lyer illusion is almost zero in the
San foragers of the Kalahari but very pronounced in
Westerners (Henrich, Heine, & Norenzayan, 2010). In
the same line as in the present study, Goodbourn et al.
(2012) tested four different magnocellular tasks and
showed that these tests are not highly correlated. In
addition, they found that among these tasks, only one
pair shared more than 4% of variance and that
correlations between these tasks and a nonmagnocel-
lular task were similarly low. In combination, these and
our results suggest that the visual system is highly
modular, with each module specializing in a different
form of processing, but with little overlap between
modules.

In summary, we showed that there are very few
significant correlations among basic visual tests,
indicating that there is no obvious general factor
underlying vision. We propose that experience shapes
vision in a very specific manner. Our results apply only
to people with good vision and do not challenge the
value of eye tests for the general population. In general,
the interesting question arises: Under which conditions
do high correlations occur between different tests and
when are lower correlations found?

Keywords: vision, detection, discrimination

Acknowledgments

This work was supported by the National Center of
Competence in Research (NCCR) SYNAPSY of the
Swiss National Science Foundation (SNF) and by the
ANR (ANR IBM ANR-12-PDOC-0008-01 to Céline
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