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The detection of a Gabor patch (target) can be decreased or improved by the presence of co-oriented
Gabor patches (flankers) having the same spatial frequency as the target. These phenomena are thought
to be mediated by lateral interactions. Depending on the distance between target and flankers, commonly
defined as a multiple of the wavelength (k) of the carrier, flankers can increase or decrease a target’s
detectability. Studies with foveal presentation showed that for target-to-flankers distances <2k contrast
thresholds for the central target increase, while for target-to-flankers distances >3k contrast thresholds
decrease. Earlier studies on collinear facilitation at the near-periphery of the visual field (4� of eccentric-
ity) showed inconsistent facilitation (Shani & Sagi, 2005, Vision Research, 45, 2009–2024) whereas more
recent studies showed consistent facilitation for larger separations (7–8k) (Maniglia et al., 2011, PLoS
ONE, 6, e25568; Lev & Polat, 2011, Vision Research, 51, 2488–2498). However, all of these studies used
medium-to-high spatial frequencies (3–8 cpd). In this study we tested lower spatial frequencies (1, 2,
and 3 cpd) with different target-to-flankers distances. The rationale was that near-peripheral vision is
tuned for lower spatial frequencies and this could be reflected in collinear facilitation. Results show con-
sistent collinear facilitation at 8k for all the spatial frequencies tested, but also show collinear facilitation
at shorter target-to-flanker distance (6k) for the lowest spatial frequencies tested (1 cpd). Additionally,
collinear facilitation decreases as spatial frequency increases; opposite to the findings of Polat (2009,
Spatial Vision, 22, 179–193) in the fovea, indicating a different spatial frequency tuning between foveal
and peripheral lateral interactions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction prominent hypothesis is that these modulations are mediated by
At early stages of visual analysis, information is processed
locally and for specific features of the input (Hubel & Wiesel,
1963). Moreover, there are excitatory and inhibitory interactions
between neurons (Gilbert & Wiesel, 1985; Kapadia et al., 1995).
For example detection thresholds for a Gabor stimulus can be
modulated by placing two high-contrast flanking Gabor stimuli
collinearly aligned (Polat & Sagi, 1993, 1994a). This phenomenon
is thought to be mediated by lateral interactions; that is,
depending on the distance between the central target and flankers
modulation can be facilitatory or suppressive. Indeed, there is
psychophysical evidence that collinear facilitation peaks around a
target-to-flankers distance corresponding to 3 times the carrier’s
wavelength (k) of the Gabor, while for shorter distances (e.g.,
1.5–2k) there is suppression (Polat & Sagi, 1993, 1994a). The most
long-range interactions between units in the primary visual cortex
paired by orientation preference (Bolz & Gilbert, 1989; Gilbert,
1992; Gilbert & Wiesel, 1985; Grinvald et al., 1994; Malach et al.,
1993; Malonek, Tootell, & Grinvald, 1994; Polat & Norcia, 1996;
Polat et al., 1998; Ts’o, Gilbert, & Wiesel, 1986).

Interestingly there is physiological evidence that these connec-
tions span outside of the visual cortex area that represents the
fovea, encompassing part of the periphery (Gilbert & Wiesel,
1989; Malach et al., 1993; Ts’o et al., 1986). Single cell recording
studies in monkeys and cats showed extrafoveal contextual modu-
lation for distances up to 10� of eccentricity (Kapadia et al., 1995;
Polat et al., 1998).

To date several studies on lateral interactions have focused on
foveal presentation while few studies have dealt with peripheral
lateral interactions; that is, presenting the collinear configuration
(target and flankers) at a certain eccentricity (4�–6�; Shani &
Sagi, 2005; Williams & Hess, 1998; Zenger-Landolt & Koch,
2001). Most of the studies that investigated peripheral lateral
interactions tested peripheral collinear facilitation with stimuli
presented in the near-periphery (eccentricity up to 4�) showing a
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greater amount of suppression with respect to the fovea and no
evidence of consistent facilitation. For example, Giorgi and
colleagues (2004) provided evidence for collinear facilitation, but
the authors compared the collinear condition in which target and
flankers were iso-oriented along the vertical axis with a no-flank-
ers condition. In this case it was not possible to assess whether
the flankers acted either as collinear modulatory elements or more
generally as spatial cues, reducing the spatial uncertainty. Shani
and Sagi (2005) adopted a more precise paradigm comparing the
collinear configuration with an orthogonal configuration (i.e., with
flankers orthogonally oriented with respect to the vertical target)
under the assumption that a greater than 45� orientation differ-
ence between target and flankers does not produce collinear facil-
itation (Polat & Norcia, 1996; Polat & Sagi, 1994). With this method
lower contrast thresholds for the collinear condition with respect
to the orthogonal condition are considered evidence for peripheral
facilitation. However, for target-to-flankers distance of 4k, typically
facilitatory in foveal vision, the authors failed to find consistent
collinear facilitation.

Recently two studies (Maniglia et al., 2011; Lev & Polat, 2011)
attempted to establish some possible relationships between
psychophysical results and physiological evidence of inter-layer
connections outside the cortical area representing the fovea. In
particular these studies reported consistent collinear facilitation
for eccentric (near-peripheral) presentation at target-to-flankers
distances larger than the separation that produces facilitation in
fovea (i.e., 8k and 7k). Lev and Polat (2011) used a yes–no paradigm
with a ‘‘mix trial’’ procedure (i.e., orthogonal and collinear config-
urations were presented randomly within the same block at differ-
ent target-to-flankers distances) previously used in the fovea by
Polat and Sagi (2007), and measured Hits, False Alarms and Crite-
rion. The authors considered the increase of Hits and False Alarms
and the negative value of the Criterion as indicators of collinear
facilitation. The rationale of the ‘‘mix procedure’’ paradigm is that
by presenting stimuli with different features (e.g., orientation,
eccentricity, separation) within the same experimental block,
observers cannot adapt their Criterion in order to reduce the False
Alarm rates. Thus producing a genuine sensitivity measure not
affected by compensative strategies (Polat & Sagi, 2007).

Polat and Sagi (2007) reported that collinear facilitation pro-
duces filling-in, resulting in higher Hits and False Alarm rates
and negative Criterion values. The underlying neuronal explana-
tion is that flankers placed within the facilitatory distance produce
higher neuronal baseline activation leading to more reporting for
the central target even when it was not present. Consistent with
this, Meirovithz et al. (2010) showed using fMRI that collinear
flankers produce not only facilitation for the target response but
also increase the baseline activity at the target location even when
the target was not present. Crucial for the emergence of this pat-
tern of results is the ‘‘mix procedure’’, since it does not allow
observers to compensate for the increase of target reporting by
changing their response Criterion that is a subjective measure of
sensitivity.

However, the ‘‘mix procedure’’ in Polat and Sagi (2007) did not
produce the expected increase of d0 (the sensitivity index obtained
by the standardized difference between the means of the Signal
Present and the Signal Absent distribution within the Signal Detec-
tion Theory framework) for facilitatory target-to-flankers distances
(Polat & Sagi, 1993), probably because of the lack of the shift in
Criterion apparently necessary for the induction of the facilitation.
In a subsequent experiment Polat and Sagi (2007) used a temporal
2AFC task which restored the classical finding of collinear facilita-
tion for target-to-flankers distance of 3k (Polat & Sagi, 1993). The
authors argued that in a temporal 2AFC paradigm, there is no need
for a pre-stored strategy to choose from because the most efficient
strategy is to compare the stimulus in the first interval with that in
the second temporal interval. In conclusion Polat and Sagi (2007)
proved that collinear facilitation produces filling-in but that this
can be properly observed and measured only when the Criterion
does not shift by mixing different condition in the same experi-
mental block.

As aforementioned, Lev and Polat (2011) using a yes–no para-
digm with a ‘‘mix procedure’’ and the configuration presented at
4�, showed higher Hits and False Alarms whilst lower Criterion
for the collinear condition with respect to the target-alone and
the orthogonal conditions. For the fovea, no difference in terms
of d0 between collinear and orthogonal conditions were found. This
is somewhat in contrast with our previous study (Maniglia et al.,
2011) in which we reported lower contrast thresholds and higher
d0 for the collinear configuration with respect to the orthogonal
configuration with a yes–no task. However, we used a ‘‘fixed pro-
cedure’’ so the observers had the possibility to adjust their Crite-
rion. Thus, similarly to what Polat and Sagi (2007) showed for
the fovea, such difference in d0 might be due to different strategies
between fixed and mixed trial procedures. On the other hand,
whilst Polat and Sagi (2007) showed collinear facilitation in fovea
using a temporal 2AFC instead of the yes–no task, Lev and Polat
(2011) did not test for this possibility in the periphery, assumed
a bidirectional correspondence instead.

In our previous study (Maniglia et al., 2011) we measured col-
linear facilitation as the difference in contrast thresholds between
collinear and orthogonal conditions and found a significant reduc-
tion of contrast thresholds at a target-to-flankers distance of 8k.

Taken together our previous results (Maniglia et al., 2011) and
those of Lev and Polat (2011) suggest the presence of collinear
facilitation at the near periphery of the visual field but at larger tar-
get-to-flankers distances than in fovea.

It should be noted that all previous studies on peripheral collin-
ear facilitation used Gabor stimuli with medium to high spatial fre-
quencies (i.e., 3–8 cpd) that, while ideal for foveal vision, may not
be suitable for studying peripheral facilitation since the visual
periphery is more selective for low spatial frequencies. Indeed,
the periphery of the visual field is subject to cortical magnification
and scaling for eccentricity. Tailby, Cubells, and Metha (2001)
using a collinear configuration of Gabor patches with the same
contrast found evidence for contrast summation when the collin-
ear configuration was presented at 4.8� of eccentricity and using
Gabor patches with a spatial frequency of 3 cpd. However, they
did not find evidence for spatial summation when using 6 cpd.
The authors argued that the different results are associated with
the low spatial frequency tuning of neurons processing the periph-
eral space.

In order to investigate the spatial frequency selectivity of collin-
ear facilitation at the periphery of the visual field we used a tem-
poral two alternative forced-choice task (2AFC) with triplets of
stimuli randomly presented at 4� with respect to a central fixation
point, either to the left or to the right visual hemi-field. The task of
the observers was to judge in which temporal interval the target
was present.

In contrast to Lev and Polat (2011) and our previous study
(Maniglia et al., 2011) we avoided the yes–no task for two main
reasons, because: (i) it seems more suitable for measuring filling-
in than collinear facilitation (Lev & Polat, 2011; Polat & Sagi,
2007), and (ii) as Giorgi et al. (2004) reported, collinear facilitation
in the periphery can be found with a temporal but not spatial two-
alternative forced choice (2AFC). Probably because in the spatial
2AFC subjects are forced to attend competing stimulus configura-
tions, reducing the facilitation. In this context Freeman, Sagi, and
Driver (2001) showed that the allocation of attention is an impor-
tant factor for collinear facilitation, and a spatial 2AFC task, in
which subjects are forced to split their attention between two
different spatial locations, could be detrimental for collinear



Fig. 1. Gabor patches used in Experiment 1. The first row represents collinear
configurations of 1 cpd with target-to-flankers distances of 3k, 4k, 6k, and 8k (from
left to right). The second row represents orthogonal configurations of 1 cpd with a
target-to-flankers distance of 3k, 4k, 6k, and 8k. However, in the experiment we also
used Gabor patches of 2 and 3 cpd. The contrast of the central Gabor patch (i.e., the
target) is increased for demonstrative purposes.
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facilitation. As Polat and Sagi (2007) pointed out a temporal 2AFC
task is a more robust procedure because it does not require choos-
ing between pre-stored strategies and it is suitable for replicating
classical findings of collinear facilitation. In addition we estimated
contrast thresholds instead of d0.

The results of the present study show that at 2 and 3 cpd con-
trast thresholds estimated in the collinear configuration are signif-
icantly lower than contrast thresholds estimated in the orthogonal
configuration at 8k. At 1 cpd facilitation is already present at 6k,
suggesting selectivity for low spatial frequencies. This is consistent
with the spatial characteristics of the visual periphery (Banks,
Sekuler, & Anderson, 1991). Further, we showed that collinear
facilitation decreases as spatial frequency increases, the opposite
of what Polat (2009) found in the fovea.

2. Experiment 1

The aim of Experiment 1 was to measure collinear facilitation in
the near periphery (4� of eccentricity) with low spatial frequencies
(i.e., 1, 2, and 3 cpd) in order to assess whether the magnitude of
collinear facilitation is associated with spatial frequency selectivity
also for non-foveal presentation. Since the periphery of the visual
field is selective for low spatial frequencies stronger collinear facil-
itation for the lowest spatial frequency (i.e., 1 cpd) was expected.

2.1. Methods

2.1.1. Apparatus
Stimuli were displayed on a 1700 Dell M770 CRT monitor with a

refresh rate of 60 Hz. We generated the stimuli with Matlab
Psychtoolbox (Brainard, 1997; Pelli, 1997). The screen resolution
was 1024 � 768 pixels. Each pixel subtended 1.89 arcmin. The min-
imum and maximum luminance of the screen were 0.98 cd/m2 and
98.2 cd/m2 respectively and the mean luminance was 47.6 cd/m2.
Luminance was measured with a Minolta CS110 (Konica Minolta,
Canada). A digital-to-analogue converter (Bits#, Cambridge
Research Systems, Cambridge UK) was used to increase the dynamic
contrast range (12-bit luminance resolution). A 12-bit gamma-
corrected lookup table (LUT) was applied so that luminance was a
linear function of the digital representation of the image.

2.1.2. Participants
One of the authors and five naïve participants took part in the

experiment. All participants had normal or corrected to normal
visual acuity. They sat in a dark room at a distance of 57 cm from
the screen. The participant’s heads were stabilized using a chinrest.
Viewing was binocular. They were instructed to fixate at the center
of the screen. All participants took part voluntarily with no com-
pensation. In addition, all participants gave written informed con-
sent prior to their inclusion in the experiment. We have performed
the study in accordance with the ethical standards laid down by
the Declaration of Helsinki (1964).

2.1.3. Stimuli
Stimuli were Gabor patches consisting of a cosinusoidal carrier

enveloped by a stationary Gaussian. Each Gabor patch was charac-
terized by its sinusoidal wavelength k, phase u, and SD of the
luminance Gaussian envelope (r) in the (x, y) space of the image:

G x; yð Þ ¼ cos 2p=kð Þxþuð Þe� x2þy2ð Þ=r2 ð1Þ

In all experiments, r = k and u = 0 (even symmetric). Gabors had a
spatial frequency of 1, 2 and 3 cycles per degree (cpd). A vertical
Gabor target was presented flanked above and below by two
high-contrast Gabor patches (0.6 Michelson contrast) (Fig. 1). In
the orthogonal configuration flankers were always orthogonally
oriented with respect to the target and located at various distances
from the target (i.e., 3k, 4k, 6k, and 8k). The location of the target rel-
ative to the fixation point (0.18 �) was 4� either in the left or in the
right visual hemi-field.

2.2. Procedure

We measured and compared the contrast detection thresholds
of a vertical Gabor target flanked by either two vertically oriented
Gabor patches (collinear configuration; Fig. 1) or two orthogonally
oriented Gabor patches (orthogonal configuration; Fig. 1) with
target-to-flankers distances of 3k, 4k, 6k, and 8k. The spatial fre-
quencies tested were 1, 2 and 3 cpd. Contrast detection thresholds
were measured at 4� of eccentricity. We used a temporal two-
alternative forced choice task (temporal 2AFC). After an initial



Fig. 2. Schematic representation of the procedure used in Experiment 1. The target
is shown in the first temporal interval. The contrast of the target is increased for
demonstrative purposes. See text for more details about the procedure.
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fixation of 1 s the first temporal interval was presented for 80 ms,
and after a further delay of 500 ms the second temporal interval
was presented always for 80 ms. The target was presented either
in the first or second temporal interval and participants were
required to choose which of the two temporal intervals contained
the target. In addition the target could be presented either in the
left or right visual hemi-field (Fig. 2). We used a stimulus duration
of 80 ms to prevent eye movements toward the stimuli (Carpenter,
1988; Martinez-Conde, Macknik, & Hubel, 2004). The temporal
interval and the visual hemi-field were randomized on a trial basis
with the constraints that the target could not be presented in the
same temporal interval or in the same visual hemi-field for more
than three consecutive trials.

The contrast of the central Gabor target was varied according to
a simple 1up-3down staircase (Levitt, 1971). The starting contrast
of the target Gabor was set at 0.1 Michelson contrast increasing by
0.1 log units for each wrong response and decreasing by the same
value after three consecutive correct responses. The staircase ter-
minated after either 120 trials or 16 reversals. Contrast threshold
corresponding to 79% correct responses was calculated averaging
the contrast values in correspondence to the last 8 reversals.
Acoustic feedback (50 ms tone at 500 Hz) was given following a
wrong answer. Participants performed the task on three consecu-
tive days. A daily session consisted of 8 blocks in which the
target-to-flankers distance and the flankers’ orientation were
varied while the spatial frequency was kept constant. Each day
was devoted to one spatial frequency starting from the lower
(i.e., 1 cpd).

2.3. Results

2.3.1. Collinear facilitation
The results show that the contrast thresholds estimated in the

collinear condition are significantly lower than in the orthogonal
configuration at 8k for 2 and 3 cpd (paired-sample t-tests between
collinear and orthogonal contrast thresholds; 2 cpd: t5 = �2.818,
p = 0.037, d = 1.152; 3 cpd: t5 = �5.314, p = 0.003, d = 2.16) (Lev &
Polat, 2011; Maniglia et al., 2011). For spatial frequency of 1 cpd col-
linear thresholds were significantly lower at both 6k (t5 = �4.216,
p = 0.008, d = 1.72) and 8k (t5 = �2.9, p = 0.034, d = 1.18) (Fig. 3,
panels A–C).

In order to allow comparisons with previous studies (see the
Discussion section) we report the averaged contrast thresholds
expressed in percentage contrast and the relative standard
deviation (SD) for the three spatial frequencies tested. In addition
we report only the percentage contrast relative to the statistically
significant conditions. In particular, for 1 cpd: Collinear at 6k =
0.98 ± 0.45%, orthogonal at 6k = 1.28 ± 0.39%, collinear at 8k =
0.96 ± 0.41%, orthogonal at 8k = 1.23 ± 0.44%. For 2 cpd: collinear
at 8k = 2.11 ± 0.54%, orthogonal 8k = 2.48 ± 0.44%. For 3 cpd: collin-
ear 8k = 3.48 ± 0.67%, orthogonal = 4.36 ± 0.91%.

In Fig. 3 we also report the normalized thresholds which were
computed by taking the difference between the contrast thresholds
obtained in the collinear configuration and in the orthogonal
configuration for each target-to-flankers distance (k) and for each
spatial frequency (Fig. 3, panels D–F). We also express in percent-
age the difference (absolute values) between the contrast
thresholds estimated in the collinear and orthogonal conditions:
0.27 ± 0.23%, 0.37 ± 0.29% and 0.87 ± 0.4% for 1, 2 and 3 cpd at 8k
respectively, while for 1 cpd at 6k it was 0.29 ± 0.17%.

In addition we tested whether normalized thresholds differed
significantly from zero (i.e., no modulation), thus indicating
2 d refers to the Cohen’s d effect size, calculated for paired samples t-tests as d ¼ t
ffiffi

n
p

where t is the t-value and n is the sample size. Cohen’s d of 0.2 represents a small, 0.5
medium and >0.8 large effect size.
,

facilitation for negative values or suppression for positive values.
Results on normalized thresholds confirmed the results reported
above for the contrast thresholds obtained in the collinear and
orthogonal configurations showed that normalized contrast
thresholds are significantly below zero at 8k for 1, 2 and 3 cpd
(1 cpd: t5 = 3.89, p = 0.011, d = 1.58; 2 cpd: t5 = 3.14, p = 0.025,
d = 1.28; 3 cpd: t5 = 5.35, p = 0.003, d = 2.18) indicating consistent
collinear facilitation, and at 6k for 1 cpd (t5 = 3.98, p = 0.01,
d = 1.62) (Fig. 3, panels D–F).
3. Experiment 2: collinear facilitation with higher spatial
frequencies

In Experiment 2 we tested collinear facilitation for higher spa-
tial frequencies (i.e., 4 and 6 cpd) in order to better understand
the role of spatial frequency in the magnitude of collinear facilita-
tion with peripheral stimuli. Contrast thresholds were measured
only for 8k since in Experiment 1 we found facilitation for the
higher spatial frequencies (i.e., 2 and 3 cpd) only at this target-
to-flankers distance. Thus, in Experiment 2 we investigated
whether with increasing spatial frequency in the near periphery
collinear facilitation is strongly diminished or even absent.

3.1. Methods

Nine naïve participants took part in Experiment 2. Stimuli were
the same as used in Experiment 1 except that the spatial frequen-
cies were 4 and 6 cpd. We measured contrast thresholds at a tar-
get-to-flankers distance of 8k. Apparatus and procedure were the
same as used in the previous experiment.

3.2. Results

3.2.1. Collinear facilitation at 4 and 6 cpd
Fig. 4 shows the contrast thresholds estimated in the collinear

and orthogonal conditions as a function of the spatial frequency.
Paired sample t-tests showed that for both spatial frequencies con-
trast thresholds measured in the collinear condition are signifi-
cantly lower than in the orthogonal configuration (4 cpd:
t8 = �2.53, p = 0.035, d = 0.84; 6 cpd: t8 = �2.64, p = 0.03, d = 0.88).
As in Experiment 1 we reported the average percentage contrast
(and standard deviation) for the spatial frequencies tested: 4 cpd,



Fig. 3. Panels A–C show the mean contrast thresholds obtained of the collinear and orthogonal configurations as a function of target-to-flankers distance for the three spatial
frequencies tested: panel A for 1 cpd (contrast thresholds for the collinear condition: 0.022 [SEM: 0.009], 0.015 [SEM: 0.005], 0.0098 [SEM: 0.001], and 0.0095 [SEM: 0.001];
contrast thresholds for the orthogonal condition: 0.011 [SEM: 0.001], 0.0097 [SEM: 0.001], 0.013 [SEM: 0.0015], 0.012 [SEM: 0.0018], respectively for 3k, 4k, 6k, and 8k), panel
B for 2 cpd (contrast thresholds for the collinear condition: 0.051 [SEM: 0.008], 0.028 [SEM: 0.0069], 0.020 [SEM: 0.002], and 0.021 [SEM: 0.001]; contrast thresholds for the
orthogonal condition: 0.0184 [SEM: 0.0025], 0.023 [SEM: 0.0017], 0.022 [SEM: 0.002], and 0.024 [SEM: 0.001], respectively for 3k, 4k, 6k, and 8k), and panel C for 3 cpd
(contrast thresholds for the collinear condition: 0.091 [SEM: 0.016], 0.067 [SEM: 0.015], 0.032 [SEM: 0.003], and 0.034 [SEM: 0.002]; contrast thresholds for the orthogonal
condition: 0.041 [SEM: 0.005], 0.039 [SEM: 0.004], 0.043 [SEM: 0.007], and 0.043 [SEM: 0.0036], respectively for 3k, 4k, 6k, and 8k). Asterisks represent a significant difference
between the collinear and orthogonal condition for a specific target-to-flankers distance. Panels D–F show the threshold elevation (difference between contrast threshold
estimated in the collinear and orthogonal configurations) as a function of target-to-flankers distance for the three spatial frequencies tested. Points represent normalized
thresholds for each observer. On average normalized threshold were: panel D 1 cpd: 0.011 (SEM: 0.008), 0.005 (SEM: 0.004),�0.003 (SEM: 0.0007), and�0.002 (SEM: 0.0009),
panel E 2 cpd: 0.032 (SEM: 0.007), 0.005 (SEM: 0.007), �0.0019 (SEM: 0.0014), and �0.0037 (SEM: 0.0011), and panel F 3 cpd: 0.049 (SEM: 0.014), 0.027 (SEM: 0.018), 0.01
(SEM: 0.007), and �0.008 (SEM: 0.001), respectively for 3k, 4k, 6k, and 8k. Asterisks represent threshold elevation values significantly below zero (i.e., collinear facilitation).
Some sub-panels have a different ordinate scale. This is to highlight some differences in terms of contrast thresholds between the collinear and orthogonal conditions (panels
A–C) and differences between normalized thresholds and zero (panels D–F). Error bars ± SEM.

150 M. Maniglia et al. / Vision Research 107 (2015) 146–154
collinear = 7.64 ± 6.29%, orthogonal = 10.6 ± 7.95%; 6 cpd, collin-
ear = 11.9 ± 4.01%, orthogonal = 14.81 ± 6.07%.

Additionally, we computed normalized thresholds and then we
compared them with respect to zero. Consistent with Experiment 1
we found that normalized thresholds are significantly lower than
zero for both spatial frequencies (one sample t-test; 4 cpd:
t8 = �2.53, p = 0.035, d = 0.84; 6 cpd: t8 = 2.64, p = 0.03, d = 0.88).
The differences in percentage contrast (absolute values) between
collinear and orthogonal condition were 2.95% (SD: 3.4%) and
2.91% (SD: 3.3%), for 4 and 6, respectively.
3.2.2. Contrast sensitivity
Despite finding some facilitation for 4 and 6 cpd at 8k (Fig. 4),

the following analysis shows that in the near periphery contrast
sensitivity decreases with increasing spatial frequency. In particu-
lar, based on Polat (2009) we calculated the contrast sensitivity
(1/contrast threshold) for collinear and orthogonal configurations
as a function of the spatial frequencies used in the previous exper-
iments (i.e., 1, 2, 3, 4 and 6 cpd) (Fig. 5). We compared the collinear
configuration with the orthogonal configuration at 8k since for this
target-to-flanker distance Maniglia et al. (2011) and Lev and Polat



Fig. 4. (Panel A) Contrast thresholds for the collinear and orthogonal configurations as a function of the spatial frequency (cpd). For 4 cpd contrast thresholds are: 0.076 (SEM:
0.02) and 0.105 (SEM: 0.026) for collinear and orthogonal configurations, respectively. For 6 cpd contrast thresholds are: 0.12 (SEM: 0.013) and 0.14 (SEM: 0.02) for collinear
and orthogonal configurations, respectively. Asterisks represent a significant difference between the contrast thresholds estimated in the collinear and orthogonal
configurations for 4 and 6 cpd. (Panel B) Threshold elevation as a function of the spatial frequency (cpd). Points represent normalized thresholds for each observer (�0.0295
[SEM: 0.011] and �0.0291 [SEM: 0.011], for 4 and 6 cpd respectively). Asterisks represent threshold elevation values significantly below zero (i.e., collinear facilitation). Error
bars ± SEM.

Fig. 5. Contrast sensitivity for collinear and orthogonal configurations is shown as a
function of the spatial frequency. Dark gray continuous line represents the single
exponential decay model fitted to the collinear configuration, whereas the bright
gray continuous line represents the same single exponential decay model fitted to
the orthogonal configuration. Error bars ± SEM.

Table 1
Estimated parameters of the simple exponential decay model fitted to the contrast
sensitivity values for the collinear and orthogonal configurations.

Parameters Value SE

Collinear. Adjusted R-square = 0.992
y0 10.72272 3.492
A 302.632 34.673
t 0.995 0.119

Orthogonal. Adjusted R-square = 0.997
y0 7.634 1.734
A 212.528 12.874
t 1.108 0.0785
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(2011) found consistent collinear facilitation with stimuli pre-
sented in the near-periphery (4� eccentricity). Despite using differ-
ent observers for the spatial frequencies, in this analysis we fitted a
single exponential decay function to the contrast sensitivity values
for the collinear configuration and the same model was fitted to
the orthogonal condition. We then performed an F-test between
the two fits to assess whether there was a difference between
the two configurations (i.e., collinear vs. orthogonal). Non-linear
fits and analysis were conducted using the OriginPro 8 software.
The single exponential decay model was:

y ¼ y0 þ Ae�x=t ð2Þ

where y0 is the y offset (i.e., the asymptote), A is the amplitude of
the function and t is the decay constant. Table 1 reports the esti-
mated parameters with the fitting procedure for the collinear and
orthogonal configurations.

The F-test reported that the two configurations were statisti-
cally different (F3,4 = 15.65, p = 0.011). Thus, the results showed
that in the near-periphery contrast sensitivity and collinear
facilitation are statistically higher for low spatial frequencies
(1 and 2 cpd).

4. Experiment 3: flankers’ visibility

The evidence that collinear facilitation at 8k decreases with
increasing spatial frequency could also depend on flankers’ visibil-
ity. That is, the reduced visibility of flankers in the near-periphery
of the visual field may decrease the effect of collinear facilitation.
In order to test for this possibility we conducted a control experi-
ment measuring the contrast threshold for a central Gabor flanked
by two very high contrast flankers (i.e., 0.99 Michelson contrast).

4.1. Method

4.1.1. Stimuli and procedure
Five naïve participants took part in Experiment 3. The method

was the same as described for the previous experiments except
that the spatial frequencies tested were 4 and 6 cpd, and the
flankers’ contrast was either 0.6 or 0.99 (Michelson contrast). We
compared contrast detection thresholds for collinear and orthogo-
nal configurations at a target-to-flankers distance of 8k. Contrast
detection thresholds were measured at 4� of eccentricity. The pro-
cedure was the same as used in Experiments 1 and 2. Participants
performed the task in one day.

4.2. Results

Fig. 6 shows the results of Experiment 3. We computed thresh-
old elevation as the difference between collinear and orthogonal



Fig. 6. Contrast threshold elevation computed as the difference between the contrast thresholds estimated in the collinear configuration and the orthogonal configuration, for
4 (panel A) and 6 cpd (panel B), and for flankers’ contrast of 0.66 and 0.99 (Michelson contrast). Mean and individual data (s1–s5) are reported. Mean normalized thresholds
for 4 cpd: �0.038 (SEM: 0.019) and �0.016 (SEM: 0.009) for 0.66 and 0.99 flankers’ contrast, respectively. Mean normalized thresholds for 6 cpd: �0.028 (SEM: 0.014) and
�0.018 (SEM: 0.014) for 0.66 and 0.99 flankers’ contrast, respectively. Error bars ± SEM.
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threshold at 8k for each spatial frequency and separately for each
flankers’ contrast level (i.e., 0.6 and 0.99 Michelson contrast). A
repeated measures ANOVA including the Spatial Frequency and
the Flankers’ contrast as factors did not report any significant main
effect (Spatial Frequency: F1,4 = 0.16, p = 0.71, partial-g2 = 0.04;
Flankers’ contrast: F1,4 = 1.53, p = 0.28, partial-g2 = 0.28) or interac-
tion (F1,4 = 0.13, p = 0.74, partial-g2 = 0.03). Thus, the results show
that normalized thresholds estimated in the high contrast condi-
tion (0.99) did not differ significantly from those obtained in the
lower contrast condition (0.66) and this was the case for both
spatial frequencies (i.e., 4 and 6 cpd).

To further confirm these results, we also performed paired sam-
ples t-tests between the low contrast flankers and the high con-
trast flankers separately for the two spatial frequencies: 4 cpd:
t4 = 0.98, p = 0.38, d = 0.44; 6 cpd: t4 = 0.46, p = 0.66, d = 0.21. These
results confirm that there was not a significant difference between
the two contrast levels and further suggest that the reduction in
magnitude of collinear facilitation for mid-high spatial frequencies
was not due to flankers’ visibility but more likely to the spatial fre-
quency selectivity of neurons responding to peripheral stimuli.

5. Discussion

In a series of experiments we showed that collinear facilitation
at the near periphery of the visual field (4� of eccentricity) is con-
sistently present for a target-to-flankers distance of 8k. Interest-
ingly, for a spatial frequency of 1 cpd observers also showed
facilitation at 6k. The amount of collinear facilitation compared
to the baseline (i.e., the orthogonal configuration) decreases expo-
nentially with increasing spatial frequency, the opposite of what
Polat (2009) reported for foveal presentation. Concerning collinear
facilitation in fovea Polat (2009) reported threshold elevation,
expressed as the log ratio between unflanked and flanked condi-
tions, as a function of spatial frequency, showing that the highest
reduction of threshold for the collinear condition with respect to
the orthogonal condition (the baseline condition for peripheral
collinear facilitation) was �0.225 log units for the highest spatial
frequency (12 cpd). Calculating threshold elevation in a similar
manner (i.e., log10 ratio between orthogonal and collinear condi-
tion), we found that in general the effect of peripheral collinear
facilitation is stronger for the lowest spatial frequency tested
(1 cpd: 0.11 log units), while for the highest spatial frequency it
is greatly reduced (6 cpd: 0.05 log units). This is similar to what
happens in fovea for low spatial frequencies where the sensitivity
for the collinear condition is between 0.03 and 0.015 log units
(Polat, 2009).

To date, only Maniglia et al. (2011) have measured peripheral col-
linear facilitation using similar parameters (i.e., target-to-flankers
distances) to those used in the present study. However, Maniglia
et al. (2011) used a different procedure (i.e., method of constant
stimuli; MCS), a yes/no task and only a spatial frequency of 4 cpd.
In particular, they reported normalized thresholds (log10 ratio
between orthogonal and collinear threshold) for ‘‘low contrast
thresholds’’ (i.e., the contrast value that produced 60% detection)
and ‘‘high contrast thresholds’’ (i.e., the contrast value that produced
80% detection) both showed a strong reduction of collinear facilita-
tion at 8k, with 0.04 and 0.08 log units respectively. Such reduced
collinear effect could be attributed to the different methods used,
with the filling-in effect inducing more false alarms in the one
interval presentation with respect to the temporal 2AFC used in
the present study.

Shani and Sagi (2005) used a similar paradigm to that used in the
present study (i.e., staircase with a temporal 2AFC with stimuli pre-
sented at 4� of eccentricity), but with a shorter target-to-flankers
distance (4k) and a spatial frequency of 4 cpd. The authors reported
the percentage contrast of two subjects tested on collinear and
orthogonal conditions: subject 1 obtained 16.5 ± 0.6% for the collin-
ear configuration and 14.2 ± 1.1% for the orthogonal configuration,
while subject 2 obtained 7.5 ± 0.7% and 6.3 ± 0.0.5%, for collinear
and orthogonal configurations, respectively. In a subsequent exper-
iment Shani and Sagi (2005) scaled the spatial frequency for the
cortical magnification factor using a spatial frequency of 1.84 cpd.
Despite finding lower contrast thresholds, authors did not find
consistent collinear facilitation (subject 1: collinear configuration =
1.7 ± 0.0%, orthogonal configuration = 1.9 ± 0.3%; subject 2: collinear
configuration = 2.1 ± 0.2%, orthogonal configuration = 1.8 ± 0.1%).
In this study we tested target-to-flankers distances beyond 4k
and, in agreement with recent literature (Lev & Polat, 2011;
Maniglia et al., 2011), we considered the optimal target-to-flankers
distance for collinear facilitation in the near periphery to be 8k.
Indeed, the contrast thresholds we estimated at 8k in the collinear
and orthogonal conditions are, on average, lower than those mea-
sured by Shani and Sagi (2005) at 4k. The difference between the
contrast thresholds estimated in the collinear condition of the pres-
ent study and those of Shani and Sagi (2005) is 3% measured at 8k
[Maniglia et al., 2011] and 4k [Shani & Sagi, 2005]), whereas for
the orthogonal condition the difference between thresholds is 9%
(8k [Maniglia et al., 2011] and 4k [Shani & Sagi, 2005]). Such a
difference may indicate that in the near periphery at 4k lateral
interactions are still suppressive and lead to higher contrast
thresholds for the collinear configuration with respect to the
orthogonal configuration. If we compare another similar condition
we used to that of Shani and Sagi (2005) (i.e., 4 cpd and 6k [present
study] vs. 4 cpd and 4k [Shani & Sagi, 2005]), the difference in con-
trast thresholds is reduced for the collinear condition (7%) but it is
almost the same for the orthogonal condition (4%).
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Similarly, Giorgi et al. (2004) measured peripheral collinear
facilitation for a range of eccentricities and target-to-flankers dis-
tances with a temporal 2AFC. They reported a contrast threshold
reduction of �0.1 log units already at 4k for 2�, 4� and 6� of eccen-
tricity. However, the authors used a target-alone condition as base-
line so it is not possible to determine whether this reduction of
threshold is due to collinear facilitation or to spatial uncertainty
reduction where collinear flankers acted as spatial cue for the
central target. Interestingly the amount of threshold reduction
reported by Giorgi et al. (2004) is the same as we found, with differ-
ent target-to-flankers distances (4k vs. 8k) and different baseline
conditions (no flankers vs. orthogonal flankers). However, further
psychophysical investigations would be necessary to assess
whether there is similar collinear facilitation at other eccentricities.

Overall, using a temporal 2AFC we showed consistent collinear
facilitation in the periphery of the visual field (see Giorgi et al.,
2004 for similar results). However, we argue that for future inves-
tigations it is important to consider that collinear facilitation at the
periphery is sensitive to the methodological procedure (Giorgi
et al., 2004) and the stimulus parameters, as well as being highly
variable among subjects (Lev & Polat, 2011). Additionally, temporal
2AFC at the periphery may be limited by the subjects’ ability to
maintain fixation between the first and the second interval (Lev
& Polat, 2011). Despite these possible limitations of the procedure
employed our results seem to be consistent with previous studies
that used a yes/no paradigm (Lev & Polat, 2011; Maniglia et al.,
2011) and are also plausible when considering the spatial fre-
quency tuning of the periphery of the visual field (Rovamo and
Virsu, 1979).

Our results are consistent with the idea that collinear facilita-
tion peaks between 3 and 6 cpd for the fovea and at lower spatial
frequencies in the periphery (e.g., 0.5–1 cpd), where the spatial fre-
quency selectivity is low-pass (Banks et al., 1991). In addition, the
pattern of collinear facilitation we found cannot be explained by
eye movements since the presentation of the vertical configuration
was very brief (80 ms), i.e., less than the time required for a sacc-
adic eye-movement (Carpenter, 1988; Martinez-Conde et al.,
2004). In each trial we randomized both the temporal interval in
which the target could be presented and the visual hemi-filed.
Indeed, the trend of the amount of collinear facilitation follows a
very different pattern to that observed in fovea (Polat, 2009).

Perceptual Fields (PF; the equivalent in visual perception to the
Classical Receptive Field) are usually modeled as having 2 or 3
antagonistic subunits (Polat & Tyler, 1999; Watson, 1992;
Watson, Barlow, & Robson, 1983). Psychophysical studies on lateral
interactions support the idea that inhibition is the product of the
integration of inputs within the same PF, while facilitation is a
between-PFs interaction (Polat & Sagi, 1993; Zenger & Sagi,
1996). Lev and Polat (2011) proposed that the size of the suppres-
sive zone can be considered as an index for estimating the size of
the PF. Since peripheral vision is characterized by cortical magnifi-
cation, in order to produce an optimal neural activation, visual
stimuli must be rescaled in size as a function of the eccentricity
(Daniel & Whitteridge, 1961). Thus, the center-to-center distance
of the optimal collinear facilitation increases from the fovea to
the periphery as a consequence of the increasing size of the PF
(i.e., 3k vs. 8k). Moreover, our results suggest that in the near-
periphery there is a shift of the optimal spatial frequency for collin-
ear facilitation towards lower spatial frequencies (Gelb & Wilson,
1983a, 1983b; Graham, 1989). This observation is also consistent
with electrophysiological studies in monkeys and cats. Devalois,
Albrecht, and Thorell (1982) using single-cell recording in maca-
que’s V1 found that foveal and parafoveal visual cortex have simi-
lar proportion of simple and complex cells, and similar selectivity
for spatial frequency and orientation tuning. However, the sample
of recorded parafoveal cells did not include cells tuned to high
spatial frequencies. Moreover, the total range of spatial frequency
peaks is narrower in the parafoveal region. Additionally,
Movshon, Thompson, and Tolhurst (1978) in an electrophysiologi-
cal study on cats’ areas 17 and 18 showed that average preferred
spatial frequency declines smoothly with increasing eccentricity.

Pooresmaeili and colleagues (2010), using single cell recording
in the macaque’ striate cortex, reported a lack of collinear facilita-
tion for stimuli between 1.5� and 2.5� of eccentricity, and claimed
that there is no perceptual enhancement from collinear flankers
with peripheral presentation. Since the authors used parameters
that are more suitable for eliciting collinear facilitation in fovea
(high spatial frequency and short target-to-flankers distance), it
is possible that the lack of facilitation they reported resulted from
a non-optimal selection of parameters, in similarity to previous
psychophysical results that did not report consistent collinear
facilitation with stimulus presentation in the near-periphery
(Shani & Sagi, 2005; Williams & Hess, 1998; Zenger-Landolt &
Koch, 2001).

Future studies could apply this recently discovered scaling of
target-to-flankers distance in order to re-establish peripheral col-
linear facilitation, bringing new insight to previous evidence for
collinear suppression at the periphery of the visual field.
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