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A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response
to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their
mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque
primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating
direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion
signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of
temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to
the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation
in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-
specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel
processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in
different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g.,
translation or looming), speed on the retina is a function of the orientation of image components.
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Introduction
Neural systems have the ability to rapidly optimize computations
for their designated task in the face of the changing statistics of

sensory input (Smirnakis et al., 1997; Brenner et al., 2000; Fairhall
et al., 2001; Wark et al., 2007; Gepshtein et al., 2013). A set of
rapid adaptive phenomena described across several sensory sys-
tems share common features, in that gain and temporal integra-
tion change in a consistent manner as a function of stimulus
mean and variance. These properties are apparent in audition
(Nagel and Doupe, 2006; Dahmen et al., 2010), olfaction (Olsen
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Significance Statement

Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that
the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example,
neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast
and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording
from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of
our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel
channels that operate at different time scales.
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et al., 2010), and vision (Shapley and Victor, 1981; Dean and
Tolhurst, 1986; Carandini and Heeger, 1994; Bair and Movshon,
2004; Borst et al., 2005). To gain insight into the mechanisms
underlying these phenomena, we investigated adaptive temporal
integration (ATI) in direction-selective (DS) neurons in ma-
caque primary visual cortex (V1). ATI refers to the ability of
neurons to display a shorter window of temporal integration for
fast stimuli and a longer window for slow stimuli (Bair and
Movshon, 2004).

Several basic biophysical mechanisms are known to cause
changes in temporal integration consistent with ATI, and these can
be divided into untuned and channel-specific classes. One example
of an untuned mechanism is cortical normalization, whereby a pool
of neurons, including all orientation preferences drives a gain-
control signal (Bonds, 1989; Heeger, 1992). Normalization has been
associated with changes in temporal properties and continues to
attract interest as a fundamental mechanism of cortical function
(Reid et al., 1992; Carandini and Heeger, 1994; Carandini et al., 1997;
Kouh and Poggio, 2008; Busse et al., 2009; Reynolds and Heeger,
2009; Sit et al., 2009; Carandini and Heeger, 2012). This and other
untuned mechanisms, such as those occurring before orientation
channels are established (e.g., Ozuysal and Baccus, 2012), would
allow the statistics of motion in any direction (at any orientation) to
affect temporal integration in all neurons regardless of preferred
direction. Channel-specific mechanisms, however, allow motion
signals only within a limited channel (e.g., that which matches the
tuning of the neuron) to affect the temporal integration of a neuron.
This would hold for adaptive mechanisms within individual DS cells
and includes apparently adaptive changes in processing that have
been shown to emerge intrinsically through the interaction of stim-
ulus statistics and nonlinearities in the system (e.g., spike genera-
tion), without requiring any change in system parameters over time
(Paninski et al., 2003; Yu and Lee, 2003; Yu et al., 2005; Gaudry and
Reinagel, 2007; Hong et al., 2008). Such nonadapting mechanisms
are candidates for explaining ATI (Bair and Movshon, 2004; Borst et
al., 2005).

Using a random-motion stimulus with two orthogonal axes to
independently drive different orientation channels, we found
that ATI is channel-specific and that DS cells can simultaneously
display two different profiles of temporal integration when pro-
cessing two independent motion signals. We demonstrate that
these observations are not accounted for by previously proposed
mechanisms but can be explained by a parallel channel model.

Materials and Methods
Electrophysiology
Single-unit responses were recorded extracellularly from the primary
visual cortex (V1) of 14 (5 male, 9 female) anesthetized, paralyzed ma-
caques (Macaca mulatta). All procedures conformed to United Kingdom
Home Office regulations on animal experimentation and were appr-
oved by the Oxford Committee of Animal Care and Ethical Review, and
the Named Veterinary Surgeon of the Oxford University Veterinary Ser-
vices. Detailed methods are available in our previous study (McLelland et
al., 2010). Animals were anesthetized with a combination of respired
isoflurane (0.25%) in a moist mixture of 50% O2 and 50% room air, and
infused sufentanil citrate (6 –30 �g/kg/h) in Hartmann’s solution (3 ml/
kg/h) supplemented with dextrose (2.5%) and potassium (final concen-
tration 18 mmol/L); and paralyzed with vecuronium bromide
(Norcuron, 0.1 mg/kg/h). Artificial respiration was maintained with rate
adjustments to keep expired CO2 between 32 and 38 mmHg. Body tem-
perature was maintained near 37°C with a heating pad. EEG and electro-
cardiogram were monitored to maintain a proper depth of anesthesia.
Sterile surgery consisted of a 13 mm trephine craniotomy followed by a
small durotomy, placed over parafoveal opercular V1, �10 mm lateral to
the midline and 4 mm posterior to the lunate sulcus. The corneas were

protected with gas-permeable hard contact lenses, with additional lenses
to optimize neuronal responses to high spatial frequency (SF) stimuli.
After 5 d, animals were given an overdose of sodium pentobarbital (65
mg/kg), exsanguinated, and perfused with 4% paraformaldehyde in
saline.

A mechanical microdrive was used to advance quartz-platinum tung-
sten microelectrodes vertically into the brain (Thomas Recordings).
Signals were digitized at 12.5 kHz using a National Instruments analog-
to-digital board, and spikes were discriminated using time-amplitude
windows (custom software, C-code) and stored at 1 ms resolution.

One experiment was performed in the laboratory of A.K. at Albert
Einstein College of Medicine at Yeshiva University, New York (proce-
dures approved by the Institutional Animal Care and Use Committee of
the Albert Einstein College of Medicine at Yeshiva University and in
compliance with the guidelines set forth in the United States Public
Health Service Guide for the Care and Use of Laboratory Animals). Tech-
niques have been described in detail previously (Smith and Kohn, 2008)
and were similar to those described above, except that isoflurane was not
used during recordings. In addition, recordings were made with a 4 � 4
mm multielectrode array (0.4 mm spacing and 1 mm electrode length,
100 electrodes), implanted into the upper layers of primary visual cortex,
�10 mm lateral to the midline and �8 mm posterior to the lunate sulcus.
Events larger than a user-defined threshold were recorded, with subse-
quent off-line spike sorting to yield single-unit activity.

Visual stimuli
Basic characterization. We mapped each cell manually, using bars and
gratings under mouse control on a CRT (96 or 100 Hz; mean luminance,
27 cd/m 2) while adjusting the electrode depth in micrometer increments
to obtain well isolated action potential waveforms. We next characterized
each cell physiologically by presenting a series of drifting sinusoidal grat-
ings under computer control to generate tuning curves for direction, SF,
temporal frequency (TF), and size. Subsequent stimuli were presented
with the optimal values of these parameters, except that TF was varied.
We classified cells as simple or complex using a modulation index, MI �
F1/DC, in response to an optimal drifting grating (Skottun et al., 1991),
where DC is the mean evoked firing rate (in excess of spontaneous rate)
and F1 is the amplitude of the Fourier component of the response at the
TF of the grating.

Random motion stimuli. To characterize motion integration by DS
cells, we used the same dynamic stimulus as used previously (Bair and
Movshon, 2004), in which an optimally oriented grating moves ran-
domly (according to psuedo-random m-sequences) back and forth
along the axis of preferred motion. During any single trial, the grating
moves by a constant magnitude phase shift from one frame to the
next, yielding an equivalent temporal frequency (ETF), equal to the
TF of the grating if it moved in the same direction for several consec-
utive frames. ETF values from 0.1 to 25 Hz were tested. Because we
used this stimulus to test for the occurrence of ATI in simple cells, as
opposed to complex cells in the earlier study (Bair and Movshon,
2004), care was taken to ensure that the starting spatial phase of the
grating was near to the preferred spatial phase for the cell. This is
important at low ETF values, for which the random motion stimulus
will not fully explore the spatial phase domain within a single trial.

Random motion with mask. In a second series of experiments, we tested
whether motion integration along the preferred–antipreferred axis was
sensitive to additional motion in the orthogonal axis. We initially tested
motion integration in the preferred–antipreferred axis across a range of
ETF values as above, but using a 50% contrast grating. We calculated the
spike-triggered averages (STAs) in response to these stimuli and selected
the lowest and highest ETFs that yielded clear peaks in the STA for use in
the subsequent stimuli. Having selected a fast and slow ETF, we then
introduced a similar (same position, size, SF, and fast and slow ETFs)
randomly moving mask grating at 50% contrast, oriented orthogonally
to the target grating. We tested responses to the mask grating alone, and
to pairwise combinations of the fast and slow target with fast and slow
mask.

Random motion in independent channels. In a final set of experiments,
we tested whether cells could integrate motion in two different directions
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independently. For this, we used the same pair of orthogonal 50% con-
trast gratings (fast and slow ETFs) but rotated so that the two gratings
were at �45° to the preferred orientation, such that each grating could
drive the cell in a nonoptimal but nonetheless DS manner. For a small
number of cells (n � 3), this stimulus did not drive cells adequately (their
direction bandwidth was too narrow), and for these cells we rotated both
gratings toward the preferred axis, to lie at �26.5° to the preferred
orientation.

Modeling: integrate-and-fire model
We tested the integration properties of a simple leaky integrate-and-fire
(LIF) model (Koch, 1999; e.g., Abbott, 1999). The capacitance, C, was
fixed (100 pF), and leak conductance, gleak, was varied to control the
membrane time constant, �m. The stimulus for this model was an ab-
straction of the dynamic motion stimulus used to test DS cells in vivo.
Specifically, it comprised a binary-amplitude current that randomly took
a fixed positive or negative value on each “frame” (10 ms period). The
positive value represented movement of the stimulus in the preferred
direction, and negative value in the antipreferred direction. The ampli-
tude of this binary current was varied (default value, �20 pA) to repre-
sent stimuli of different strengths (e.g., changes in ETF of the motion
stimulus). To this was added a fixed amplitude of Gaussian white noise
(SD 40 pA) and a mean DC offset current to bring the stimulus into a
range to generate a physiologically relevant firing rate. This offset varied
with gleak, from �20 to 200 pA. We also included shot noise, in the form
of large-amplitude current pulses, with a Poisson distributed rate of 1 Hz,
such that a small percentage of generated spikes were completely inde-
pendent of the binary stimulus. This yields STAs that are more physio-
logical in appearance, but does not qualitatively change the results. STAs
were calculated against the binary stimulus.

To emulate our dual-orientation visual stimulus in the LIF model,
the input was as above, except that two binary signals of different
amplitude were combined (35 and 55 pA in the data presented, al-
though a wide range of values were tested), each independently taking
a positive or negative value on each frame. The Gaussian noise and
mean DC offset were the same as in the case of the independent signals
(i.e., these were not doubled); and to keep the interpretation of results
as simple as possible, no shot noise was included in this case.

Modeling: spiking population model
We used a spiking population model of DS cells to gain insight into the
mechanisms that could yield changes in temporal integration. This
model has been described in detail previously (Baker and Bair, 2012).
Briefly, the model comprises 4 subpopulations, as follows. Activity in the
LGN layer is generated from a noisy conductance input, the amplitude of
which is calculated as the linear convolution of spatiotemporal filters and
the visual stimulus. The middle layers comprise excitatory and inhibitory
simple cells, with no direction selectivity, but with orientation tuning
established by the probabilistic selection of inputs from the LGN layers.
Direction selectivity is achieved in the final layer by taking inputs from
pairs of simple cells with similar receptive field locations and orientation
tunings but a 90 degree offset in spatial phase selectivity (Adelson and
Bergen, 1985; Nakayama, 1985). Spikes from the first cell of each pair set
up a delayed temporal window that multiplicatively gates spikes from the
second cell (Reichardt, 1961). DS cells in the final layer are driven by
several such cell pairs and thus have complex receptive fields.

To test a channel-specific model of ATI, we used a modified version of
the model in which the first three layers were duplicated to provide a
second independent channel of input to the DS cell layer. This new
channel had a longer temporal kernel at the LGN and a longer window of
temporal interaction for the DS mechanism. Thus, the second channel
was tuned for lower TF and slower motion.

Data analysis
STAs were calculated exactly as described previously (Bair and Movshon,
2004), with a box-car type representation of the stimulus that took a
value of 1 or �1 for the full duration, �10 ms, between frames in which
the grating had shifted in the preferred or antipreferred direction, respec-
tively. In calculating STAs for the motion of the mask grating, preferred
and antipreferred directions were assigned so that any significant STA

peak was positive. Details of statistical tests, calculated using SPSS soft-
ware, are given in Results.

Results
ATI in simple cells
Before testing whether ATI is broadly tuned or channel-specific,
we first tested whether it was apparent in simple cells (n � 15),
given that it has previously been reported only in complex cells
(Bair and Movshon, 2004). This serves to introduce the phenom-
enon and the stimulus used to assess it. A negative result would
directly and compellingly link ATI to the development of com-
plex cell properties, generally recognized as an essential and crit-
ical step in models of the cortical visual hierarchy (Hubel and
Wiesel, 1962). We assessed temporal integration for a wide range
of stimulus speeds using an ensemble of randomly stepping grat-
ing stimuli (Fig. 1A), optimized for orientation, SF, and size, and
with starting spatial phase close to the preferred phase of the
neuron. Step size (thus speed) varied across trials. The smallest
steps moved the grating at an ETF (the TF of the grating if it
stepped in the same direction on each frame) of 0.1 Hz, and the
largest steps (1/4 cycle) moved the stimulus at ETF 25 Hz. For a
typical DS simple cell, Figure 1B shows the set of STAs for nine
octaves of stimulus speed. Each trace is the mean of the white-
noise velocity stimuli that preceded each spike. The shape of the
STAs, and in particular the width, depends on the stimulus speed:
faster motion (high ETF) is associated with narrower STAs, and
slower motion with wider STAs. To summarize the trend across
our population of simple DS cells, we computed the average
width (at half-height) of the STAs as a function of ETF (Fig. 1C),
which provides a first-order characterization of the duration of
time window over which the visual input is integrated to produce
the neuronal response. The average STA width ranges from �20
ms for the fastest stimulus to over 60 ms for the slowest. As with
the complex DS cells studied previously (Fig. 1C, red), this trend
was consistent, occurring in every DS simple cell studied, and was
not simply inversely correlated with firing rate (Fig. 1D) which
did not increase monotonically with ETF.

Standard DS models do not show ATI
Importantly, no such change in temporal integration appears
when the same stimuli are presented to a standard motion energy
model of direction selectivity (Bair and Movshon, 2004). To test
whether biologically plausible network models of DS cells also
failed to show ATI (Fig. 2A; see Materials and Methods), we
presented our stimulus to a model comprised of spiking cells
driven by excitatory and inhibitory conductances. In this model,
DS cells are driven by spikes from orientation-tuned non-DS
simple cells, which were driven by spiking LGN ON and OFF cells
(Baker and Bair, 2012). Figure 2B shows that the STAs from this
model also do not show the systematic change in peak width that
is characteristic of ATI in neurons (compare Fig. 1B). This raises
the question as to what fundamental aspects of the computation
leading to cortical DS responses in simple and complex cells are
missing from basic models of motion detection.

Differentiating broadly tuned and channel-specific
mechanisms of ATI: the target/mask paradigm
We considered several ways that ATI might arise within the con-
text of plausible spiking models of direction selectivity. One pos-
sibility is that temporal integration could change early in the
system (e.g., in the retina or LGN) as a result of changes in the
distribution of power in the stimulus (Shapley and Victor, 1981).
We varied the duration of the temporal filters at the LGN level in
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our network model and found that, indeed, the STAs for the DS
cells downstream changed accordingly (Fig. 2C), due to the prop-
agation of temporal integration through the hierarchy. Alterna-
tively, the change in temporal integration could occur in cortex
(e.g., as a result of cortical normalization changing �m), the neu-
ronal membrane time constants (Reid et al., 1992; Carandini et
al., 1997) because of the higher firing rates and broader TF dis-
tribution associated with the faster moving stimuli (Bair and
Movshon, 2004). To demonstrate this principle, we examined a
single-compartment integrate-and-fire model that received cur-
rent input that was an abstraction of our random-motion stim-
ulus (Fig. 2D; see Materials and Methods). Peaks in the STA
calculated for current input become narrow as �m of the model
decreases (Fig. 2E). Both of the above models make the clear
prediction that stimuli at orientations other than those pre-
ferred by the DS cell would influence the time scale of integra-
tion, and thereby change the STA in response to a preferred
moving stimulus.

To determine whether ATI is broadly tuned, we tested 27 DS
cells in V1 (23 complex, 4 simple) using a variation of our stim-
ulus paradigm in which an orthogonally oriented, dynamically
moving mask grating is superimposed on the original optimally
oriented target grating (Fig. 3A). Both target and mask can move
with low or high ETF. If the mechanism controlling temporal
integration is broadly tuned, then the mask should influence the
window of temporal integration observed for the target. Figure
3B shows results from an example complex DS cell. The STA
calculated for the slow target alone (ETF 1.6 Hz, black trace) is
wider than that for the fast target alone (gray trace; ETF 25 Hz),
characteristic of ATI. When a fast (25 Hz) orthogonal mask was
superimposed on the slow target, the STA was essentially un-
changed (Fig. 3B, dark red trace). This was also the case when a

slow mask (1.6 Hz) was added (Fig. 3B, dark blue trace). This
occurred despite a substantial suppression of firing rate in the
presence of either mask (Fig. 3C). The STAs for the fast target
(Fig. 3B, gray trace) were also unaffected by the slow and fast (pale
blue and pale red traces, respectively; these traces are largely ob-
scured by the overlying gray trace) masks. In short, the STAs for
target motion were unaffected by the presence of the masks, in-
dicating that motion signals in orthogonal orientation channels
were not involved in setting temporal integration in this neuron.

It was not always the case that the mask had no effect on STAs.
Figure 3D shows the results from a different complex DS cell in
which the inclusion of the fast mask yielded a marked drop in the
amplitude of the STA for the slow target (dark red trace, compare
with black) along with a decrease in firing rate (Fig. 3E, dark red
bar). This change, however, did not match the prediction of tem-
poral narrowing that should occur if the fast, orthogonal mask
were able to influence the temporal integration of the recorded
cell. This cell was representative, in that the fast mask with slow
target was the only pairing that yielded a change in the STA. The
slow mask did not change the STA for either the fast or slow
target, and STAs for the fast target were affected by neither mask.
This is consistent with the idea that the fast mask generated
strong signals, which somehow degraded the directional infor-
mation in the signals of a weaker stimulus, thereby lowering STA
amplitude, but without changing temporal integration (STA
width) for the weaker stimulus.

These example cells were typical of the population (n � 27),
which is summarized in Figure 4 and Table 1. Finding no differ-
ence between results for simple and complex cells, we grouped
them together. On average, the masks tended to mildly suppress
firing rate to both slow and fast targets (Fig. 4A, left and middle),
whereas on their own, they generated a low firing rate above

Figure 1. Simple DS cells (n � 15) show ATI. A, The stimulus used to test for ATI (Bair and Movshon, 2004) comprises a sine grating, with size, orientation, and spatial frequency optimized for
the recorded cell. On each video frame, the stimulus stepped by a fixed amount randomly in either the preferred or antipreferred direction. The step size determines the ETF of the stimulus. B, STAs
for 9 ETFs (0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 13, and 25 Hz) are plotted for an example V1 simple DS cell. STA peaks become narrower with increasing ETF, which characterizes ATI previously reported
in complex cells. C, The average width at half-height of the STA peak as a function of ETF (n � 15; mean � SEM) for V1 simple (black) and complex (red) DS cells (complex cell values replotted from
Bair and Movshon, 2004). D, Average firing rate as a function of ETF for the same cells. Firing rate reaches a peak for ETFs of �6 Hz, whereas STAs continue to narrow up to the highest ETF tested (25
Hz); thus, STA width is not simply inversely correlated with firing rate.

McLelland et al. • Mechanisms for Rapid Adaptation in Visual Cortex J. Neurosci., July 15, 2015 • 35(28):10268 –10280 • 10271



baseline (Fig. 4A, right). Figure 4B–G
shows the changes in the STA peak width
(left panels) and height (right panels)
caused by changes in stimulus speed and
by the addition of the masks (distribution
means are provided in Table 1). In all cells,
consistent with the previous report of ATI
(Bair and Movshon, 2004), the change
from slow to fast target motion yielded a
decrease in STA width (Fig. 4B; significant
change on average, paired t test, p �
0.001) but no average change in STA
height (Fig. 4E; p � 0.05). In contrast, the
inclusion of a fast mask with the slow tar-
get had no significant effect on STA width
(p � 0.05; Fig. 4C, red dots; contrast with
Fig. 4B) but on average caused a signifi-
cant decrease in STA height (p � 0.001;
Fig. 4F, red dots; contrast with Fig. 4E).
STAs to the fast target (Fig. 4D,G) were
not sensitive to the presence of either slow
or fast mask (p � 0.05); and similarly, in-
clusion of the slow mask did not affect
STAs to the slow target (p � 0.05; Fig.
4C,F, blue dots).

We conclude that, because the tempo-
ral profile of target motion integration
was largely unaffected by mask motion,
the mechanism that controls temporal in-
tegration is not broadly tuned for orienta-
tion and direction. Specifically, consider
the case when a vertical grating is moving
slowly while a superimposed horizontal
grating is moving quickly. Our results im-
ply that the vertically tuned DS popula-
tion is encoding motion within a longer
time window extending further back in
time, whereas the horizontally tuned cells
are encoding more recent motion in a
shorter window, even though these cells
have overlapping receptive fields, pre-
sumably share common LGN afferents,
and could influence each other via classi-
cal cortical normalization, if it is indeed at
play. Thus, ATI involves orientation-
channel specific adaptive computation.

Implications for cortical normalization
Before further pursuing the mechanisms
underlying ATI, we briefly address the
question of how the fast mask can reduce
the amplitude of the STA, thus the directionality of the signal,
without affecting the temporal integration. We reasoned above
that untuned cortical normalization, if present, was not influenc-
ing temporal integration, but consider here whether it might
cause the observed amplitude change.

Most current models would suggest that the orthogonal mask
should engage normalization, and the decrease we find
in mean firing rate is consistent with this, and with cross-
orientation suppression, originally attributed to normalization
(Burr et al., 1981; Morrone et al., 1982; Bonds, 1989; Carandini
and Heeger, 1994). However, the decrease in firing rate might be
expected to cause an increase in STA amplitude if it resulted from

normalizing inhibition that pulled the membrane potential away
from spike threshold, thereby reducing the chance of noise-
related discharge. We confirmed this by presenting the target/
mask stimulus to our network DS model with and without
cortical normalization. Without normalization, we found no in-
fluence of the mask on the STAs (Fig. 5A). With normalization,
implemented by opening inhibitory conductances in the DS
units, the firing rate decreased and the STA amplitude increased
(Fig. 5B, red trace). This increase is opposite to the decrease in
STA amplitude that we observed in DS neurons for the slow
target when the fast mask was included (Figs. 3D, 4F), suggesting
that something quite unlike cortical normalization is at play.

Figure 2. STAs from models. A, In the spiking population model, the stimulus is convolved with a DOG spatiotemporal filter
(data not shown), and this signal plus noise provides the conductance input to the LGN layer LIF units. There are two layers of LGN
cells, corresponding to ON and OFF cells. Simple cells (colored maps) receive spikes from LGN cells based on probabilistic sampling
within a Gabor template (simple cell RF icons). A physiologically inspired orientation preference map is imposed on the simple cell
layer. In the top layer, each DS cell (triangle) receives spikes from pairs of simple cells that have RFs with matching spatial location
and orientation preference but that are phase-offset with respect to one another. By including a nonlinear temporal interaction
(see Materials and Methods) between spikes arriving from these paired cells, direction selectivity is established. Each DS cell takes
input from several simple cell pairs. B, STAs calculated for the output of DS cells in the population model in response to the same
visual stimulus as used in vivo, for a range of ETFs. The STAs do not show ATI. C, Same as in B, but for only a single ETF (6 Hz). The
STAs show the effect of directly changing the temporal filter used to generate responses in the LGN layer, when shortened (blue) or
lengthened (red) from the default value (green). D, An integrate-and-fire model demonstrates how changes in membrane time
constant, �m, could yield changes in STA. The dynamic motion visual stimulus was abstracted to a binary amplitude current with
added Gaussian noise and also shot-noise pulses, the latter inducing a fraction of spikes independent of the stimulus. E, STAs for the
integrate-and-fire model calculated against the binary stimulus. Increasing �m of the model increased the width of STAs.
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However, this cannot be taken as evidence against the existence of
cortical normalization: the increase in STA amplitude suggested
by the model is rather small and could conceivably be masked by
whatever mechanism actually does underlie the experimentally
observed decrease in STA amplitude (explored below).

Mask-driven reduction in STA amplitude
How then can we account for the mask-associated decrease in
STA amplitude (diagrammatically represented in Fig. 6A)? It
turns out that addressing this question provides further insight
into the mechanism of ATI. From a basic consideration of the
STA calculation, the simplest way to scale down the STA ampli-
tude without changing the temporal profile is to increase the
fraction of spikes that are not stimulus driven (i.e., that are inde-
pendent of the signal against which the STA is calculated). This
would be the case if extra spikes were driven by the mask because
the random sequences driving the mask and target motions are
independent. Several lines of evidence suggest that this is the case.

First, if the decrease in STA amplitude were due to the intro-
duction of mask-driven spikes, then we might expect the greatest
fall in STA amplitude to occur in those cells driven by the mask
itself. We plotted the change in STA height against the firing rate
for the mask alone (Fig. 6B) and found that they were signifi-
cantly inversely correlated across cells (Spearman’s � � �0.459;
p � 0.05). When the mask is present with the target, it is more
difficult to judge whether the mask is driving independent spikes

because of the opposing influence of cross-orientation suppres-
sion (Morrone et al., 1982; Bonds, 1989; Carandini and Heeger,
1994). Nonetheless, we found a significant correlation between
the decrease in STA amplitude and the change in firing rate from
the target-alone to target-with-mask condition (Fig. 6C; Spear-
man’s � � �0.424; p � 0.05). In other words, the cells that
showed the largest decreases in STA amplitude were those in
which the mask least suppressed, or even increased, the target-
driven firing rate.

A second feature relevant to the potential of the mask to drive
spikes is direction-tuning bandwidth. Because the mask is 90°
away from the preferred orientation, presumably only broadly
tuned cells would respond to the mask. As Figure 6D shows, there
was a significant correlation between decrease in STA amplitude
and direction-tuning bandwidth (Spearman’s � � �0.422; p �
0.05).

Given these observations, we asked whether cells could be DS
for mask motion. This might occur if orientation tuning was
broad and asymmetric around the peak value. We therefore com-
puted STAs against the direction of mask motion rather than
target motion. A negative finding would not be informative be-
cause STAs could be flat either because the mask did not drive
spikes or because those responses were not DS. A positive finding,
however, would imply that the mask is driving a certain propor-
tion of spikes. Nearly one-third of cells (8 of 25) did indeed show
the relevant peaks in STAs, as demonstrated by the mask STAs for

Figure 3. The effects of orthogonal mask motion on the integration of preferred motion. A, Representations of the preferred target (left), orthogonal mask (right), and target	mask sinusoidal
grating stimuli. Arrows indicate random motion. In each trial, the target and/or mask could move with slow or fast ETF; and in the combined case, all four pairwise combinations of slow and fast were
tested. B, For a typical complex DS cell, STAs for fast or slow target motion (light or dark lines, respectively), presented alone (black) or with a fast (red) or slow (blue lines) mask. C, Mean firing rates
(baseline subtracted) in response to the target and/or mask, with fast or slow motion. The mask alone (green bars at right) produced very little response. D, STAs for a second typical complex DS cell.
Here, the fast mask caused a decrease in the STA amplitude for slow motion (dark red line). E, Mean firing rates for the example of D.
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an example cell in Figure 6F. We quantified the size of these peaks
by measuring power in the mask STA (root mean squared from
�100 to 0 ms, normalized by the same measure from �200 to
�100 ms) and found this measure to be significantly correlated

with the decrease in the amplitude of the target-derived STA (Fig.
6E; Spearman’s � � �0.591; p � 0.005).

In summary, the effect of the mask appears to be twofold: (1)
a mild suppression of firing rate that is consistent with cross-
orientation suppression, and (2) the introduction of additional
spikes that are uncorrelated with the target motion, possibly from
additional noise but sometimes by the mask directly driving the
cell, where direction bandwidth is sufficiently broad. This influ-

Figure 4. Population summary (n � 27) of the effects of the orthogonal mask on firing rate
and STA width and height. In all panels: open triangles represent simple cells; closed squares
represent complex cells. A, Mean normalized firing rate across all cells (normalized to that for
the fast target alone, gray bar, which was typically the highest) for combinations of the fast and
slow target and mask. B, STA width comparison, fast versus slow target. This shows the basic
effect of ATI across cells: narrower STAs for faster motion. C, STA width for slow target, masked
versus no mask. Blue points indicate slow masks; red points indicate fast masks. D, STA width for
fast target, masked versus no mask. E, STA height comparison: fast versus slow target. F, STA
height for slow target: masked versus no mask. Height was significantly reduced by the fast
mask (red points) on average. G, STA height for fast target, masked versus no mask.

Table 1. STA width at half height and STA height as a function of target and mask
ETF pairings (n � 27)a

Target Mask STA width (ms) STA height

Slow None 59.2 � 14.1 0.53 � 0.16
Slow 60.9 � 14.6 0.52 � 0.16
Fast 54.3 � 12.7 0.41 � 0.18

Fast None 31.4 � 14.8 0.55 � 0.19
Slow 30.8 � 13.4 0.56 � 0.19
Fast 30.7 � 12.8 0.53 � 0.19

aData are mean � SD.

Figure 5. Contrasting the effects of an orthogonal mask and normalization in the spiking
population model. A, STAs for the slow target stimulus are unaffected by the presence of either
slow or fast masks in the DS network model. B, In contrast, decreasing the firing rate by increas-
ing inhibitory conductances in DS units, a common model of cortical normalization, leads to an
increase in STA amplitude. This is the opposite of the effect that we observed experimentally in
vivo (Figs. 3D, 4F ).
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ence of the mask is notably distinct from the prediction that it
would change the temporal integration.

Simultaneous target and mask STAs
The finding that cells can have STA peaks for mask motion leads
to an important test for mechanisms of ATI: can a single cell
simultaneously show different profiles of temporal integration
for two superimposed stimuli? We were able to test this directly
from the data for the slow target plus fast mask condition in those
cells where the simultaneous STA peaks were sufficiently large for
both the target and the orthogonal mask. There were only four
such cells (although 8 cells showed STA peaks for the fast mask, in
4 of those, STAs for simultaneous slow target motion were too
suppressed for their temporal profile to be accurately measured).
Nevertheless, in all of these cells, distinct STAs for target and
mask calculated for a single set of spikes clearly showed different
temporal profiles: wide for the slow target and narrow for the fast
mask. An example complex DS cell is shown in Figure 7A. Having
made this observation, in the final experiments, we deliberately
rotated the original target	mask stimulus by 45°, so that, rather
than comparing target and mask stimuli, we presented two or-
thogonally oriented gratings (Fig. 7B), each of which was likely to
drive the cell in a DS manner (in three cells, gratings at 45° to the
preferred direction drove cells too weakly, and so we rotated the
gratings slightly so that they were at �26.5° to the preferred di-
rection). We found that not only did the simultaneous STAs have
different temporal profiles for the two independent motions in all
cells (n � 7), but that by swapping the fast and slow gratings, we
could switch the temporal profile of integration associated with
each orientation (n � 5; this comparison was not possible for two
of the cells because the slow stimulus in one of the orientations
did not drive the cell strongly enough to generate a clear STA).
Figure 7B presents the relevant STAs from a typical cell. Figure 7C
compares STA width for the fast grating to that simultaneously
obtained for an orthogonal slow grating from all 7 cells tested
(diagonal crosses; for colored crosses, pairs with the same color
are from a single cell, where we were able to switch the fast and
slow grating orientations and still obtain measurable STA widths
for both gratings), as well as from the 4 cells that yielded valid
pairs of STAs using the original target and mask paradigm. Fast
grating STA width was significantly less than slow grating STA
width (paired t test, p � 0.0001, regardless of whether just one or
both values from cells giving a pair of results were included).

The observation that single cells show multitemporal encod-
ing, meaning that their discharge simultaneously reflects two dif-
ferent temporal integration profiles for stimulus components
with similar temporal statistics (i.e., it is the DX, not the DT that
varies with ETF in our motion stimulus), indicates that it is im-
plausible for the observed ATI to arise from an adaptive change at
the soma (or whole-cell level) in the DS cells being recorded,
simply because the cell presumably could not simultaneously be
in the two different adapted states required by the two STA
widths. An explanation of ATI in terms of adaptation within the
recorded DS neuron could be maintained only if the adaptation
remained local to dendritic subcompartments that were segre-
gated based on the preferred orientation of the afferents. As we
demonstrate next, the nature of the multitemporal encoding ob-
served here precludes another recently proposed mechanism for
ATI.

Stimulus statistics and the spiking nonlinearity
Recently, there has been substantial interest in models that show
adaptation to stimulus statistics without requiring a change in

Figure 6. The change in STA height relates to the sensitivity to the orthogonal mask. A,
Summary of the difference between changes in the STA when a fast mask is added (downward
arrow) versus when stimulus speed is increased (rightward arrow). B, Change in STA height
(slow target with fast mask/slow target alone) versus the firing rate to the fast mask alone
(baseline subtracted). The outlying point to the left is a cell for which the mask suppressed a
moderate baseline firing rate. C, Change in STA height (as in B) versus change in firing rate (slow
target with fast mask/slow target alone). D, Change in STA height versus orientation tuning
bandwidth (width at half-height of peak in the orientation tuning curve). E, Change in target
STA height versus power in STAs calculated for mask motion. The circled point is for the example
cell of F. F, Example of STA calculated for mask motion, with the peaks demonstrating direction
selectivity for the fast mask alone (black) or paired with the slow target (green).
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model parameters (Rudd and Brown, 1997; Paninski et al., 2003;
Yu and Lee, 2003; Borst et al., 2005; Yu et al., 2005; Gaudry and
Reinagel, 2007; Hong et al., 2008). These studies have focused
mainly on gain adaptation, but some specifically include a tem-
poral adaptive component (Paninski et al., 2003; Yu and Lee,
2003; Borst et al., 2005; Gaudry and Reinagel, 2007). In the sim-
plest case, these effects can arise in a LIF model, through the
interaction between stimulus statistics and the spiking nonlinear-
ity. In this case, increases in either mean or variance of inputs can
yield a narrowing of the temporal kernel (Paninski et al., 2003; Yu
and Lee, 2003).

This kind of mechanism intuitively provides a good candidate
for ATI: changes in stimulus ETF could effectively change input
variance to DS cells, and the resulting adaptive change in process-
ing would be rapid and channel-specific. However, it is not intu-
itively obvious whether this would support the multitemporal
encoding observed in DS neurons for our target/mask paradigm.
We therefore simulated an LIF model with input current that
represented our visual stimulus. Specifically, preferred and anti-
preferred motions were represented as positive and negative val-
ues, respectively, of a binary current signal, and ETF as the
amplitude of the signal (Fig. 8A; see Materials and Methods). We
first confirmed that low- and high-amplitude inputs, presented
independently, yielded relatively broad and narrow STAs, respec-
tively (Fig. 8B, solid green and blue traces), consistent with the
literature above. However, when both low- and high-amplitude
currents were input simultaneously (with independent switching
from negative to positive values), the resulting STAs for each
signal were both substantially narrowed (Fig. 8B, dashed lines),
but now the STA for the low-amplitude input was narrower than
that for the high-amplitude input. We repeated this test over a
broad range of stimulus parameters (mean current offset, Gauss-
ian noise, and binary signal amplitudes, and for a conductance-
based input stepping between different small and large excitatory
conductance levels), and it was always the case that, for the com-
bined stimulus, the STA for the low amplitude signal was nar-
rower than that for the high amplitude signal. This behavior does
not at all match our in vivo observation that a fast mask induces
no change in STA width for a slow stimulus (Fig. 4C). Thus, we
see no way that the theoretical model of intrinsic adaptation be-
ing put forward, when applied to spike generation in DS cells, can
account for our experimental findings.

It is worth making two further observations regarding these
simulation results. First, the combined input signal has a higher
variance, which is associated with narrower STAs, as mentioned
above. It has previously been reported (Bair and Movshon, 2004)
that, for an LIF model, the STA for a given input is narrowed
when independent noise is added (their Fig. 11). Second, al-

4

Figure 7. Cells can simultaneously show different temporal integration profiles for two
independent signals. A, Two STAs calculated for a single set of spikes, against either target (red)
or orthogonal mask motion (green). STA amplitude has been normalized to the peak value, to
facilitate comparison of STA widths. The STA peaks are characteristically narrow for the fast
mask motion and broad for the slow target motion. B, Same as in A, except that for this cell,
stimulus orientation was rotated by 45° such that both gratings were able to drive the cell
effectively in a DS manner. Again, distinct temporal profiles of integration could be demon-
strated for each grating simultaneously, and it was possible to swap fast and slow gratings
(bottom), to demonstrate the corresponding switch in STA width. C, Population summary com-
parison of STA widths calculated for simultaneously presented slow and fast orthogonal grat-
ings, either for the original target and mask paradigm, as in A (n � 4; plus symbols) or for the
45° rotated paradigm as in B (n � 7; X symbols: same-colored pairs show results from cells
where we were able to switch the fast and slow gratings and still get measurable STA widths).
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Figure 8. Multitemporal encoding in spiking models. A, A combination of input currents (low variance binary, high variance binary, and Gaussian white noise) are used to drive an LIF spiking
model. B, STAs from the LIF model. The STA is wide for low variance input (solid green trace), and narrow for high variance input (solid blue trace). When the two binary current inputs are combined,
the model can simultaneously yield different STA temporal profiles for each signal (dashed lines), but the STAs are significantly narrower than the component STAs (solid lines). Furthermore, the STA
for the low variance input (dashed green line) is now narrower than that for the high variance input (dashed blue line). C, A parallel TF channel DS spiking population network model. The model is
similar to that in Figure 2, except that the LGN and simple cell layers have been duplicated to create a second channel. The temporal characteristics of the LGN filter and the DS mechanism were then
adjusted to yield one high TF channel (short temporal integration) and one low TF channel (long temporal integration). D, Stimulation of this model with a slow target grating yields a broad STA
(black trace), whereas a fast target grating yields a narrow STA (gray trace). E, When driven by the 45°-rotated dual-grating stimulus (both gratings oblique to the preferred direction of the cell), the
model can simultaneously yield broad and narrow STAs for the two different signals, and the STAs will switch according to which of the gratings is slow or fast.
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though the LIF model does not capture our results, it does show
multitemporal integration, in that the two simultaneously pro-
duced STAs have different widths, despite the similar temporal
statistics of the independent binary inputs. The two STAs result
from a combination of two parallel inputs that differ in ampli-
tude interacting with the spiking nonlinearity. In contrast, we will
next examine a model that involves parallel inputs, which can
explain our observations without appealing to the spike generat-
ing nonlinearity.

A channel-specific model of ATI
We have shown that some major models proposed to account for
changes in temporal processing are unsuitable to account for
ATI. Here we put forward a model representing a class of circuits
that can account for our observations of channel specificity and
multitemporal encoding, through the critical property of having
parallel channels drive the DS cell. In this particular model, LGN
populations with different temporal filters drive orientation-
tuned simple cells in two channels with different temporal fre-
quency preferences (Fig. 8C; see Materials and Methods). These
simple cells drive DS mechanisms, envisioned here as dendritic
subunits (Häusser and Mel, 2003), with different windows of
temporal interaction. Each DS subunit contributes a conduc-
tance that is summed by the LIF soma of the DS cell. When tested
with the dynamic motion stimulus, this model showed a change
in STA width as stimulus ETF was changed (Fig. 8D). Further,
when driven by the 45°-rotated dual-grating stimulus, the model
simultaneously showed two different STA widths (Fig. 8E), and
swapping orientations of the fast and slow gratings swapped the
kernel widths (Fig. 8E, bottom).

The key feature of this model is that multiple parallel mecha-
nisms impart different temporal signatures to the visually driven
signals. These signatures then appear in the STAs. Another model
that fits this criterion is the Reichardt detector model (Reichardt,
1961), like that used by Borst et al. (2005), which uses two clearly
distinct temporal filter pathways, a low-pass and a high-pass, that
stamp their temporal signatures into the STAs. This Reichardt
detector model also shows both channel-specific ATI and multi-
temporal encoding for our direction modulation stimulus (data
not shown) but otherwise has temporal properties that differ
strongly from those of cortical DS cells.

Other forms of channel-specific models can be conceived that
do not make use of parallel, differently tuned TF channels. An
alternative could be adaptation within an orientation-specific
channel. However, to support different temporal kernels simul-
taneously, this would again introduce a requirement for multiple
parallel (orientation-tuned) channels feeding the DS cell. The
model presented suggests a means of testing the contribution of
TF-tuned versus orientation-tuned channels experimentally: the
current stimulus paradigm separates both TF and orientation,
but consider a similar stimulus comprising superimposed grat-
ings with different ETF but identical orientation: if the DS cells
are still able to generate distinct STAs to the two gratings, as is the
case for our model, then parallel TF channels must play a role.

To return to more general principles, the fundamental point
of the model is that we are unable to conceive of nonparallel
architectures that can account for our results.

Discussion
In seeking a deeper understanding of how the cortex controls
temporal integration of dynamic visual images, particularly with
respect to ATI in the signals carried by DS neurons in V1, we have
identified two important principles: channel specificity and the

capacity for multitemporal encoding. Channel specificity means
that the temporal integration of motion at a particular orienta-
tion is little influenced by motion in independent orientation
channels. It opens the possibility that the visual system may gain
some advantage by optimizing separately the processing of sig-
nals from distinct components within a local region of the image.
It offers a refined perspective relative to that of untuned cortical
normalization, which uses one very broadly tuned signal to cali-
brate the encoding across all orientation components. Multitem-
poral encoding also refines our image of temporal processing by
suggesting that the output of the neuron may represent a multi-
plex of signals processed at various time scales, as opposed to one
temporal signature limited by gross biophysical properties, such
as a somatic time constant. Below we discuss how these observa-
tions constrain the mechanisms involved in ATI and how they
relate to past studies.

Channel specificity of ATI
We have shown that ATI is not consistent with broadly tuned
adaptive mechanisms, and thus cannot result from phenomena
in the retina or LGN or from cortical normalization, in which
signals from stimuli of all orientations become intermixed. In-
stead, temporal integration is set in a channel-specific manner.
Channel specificity has long been recognized for other adaptive
processes, such as pattern adaptation (Blakemore and Campbell,
1969; Maffei et al., 1973; Kohn, 2007), which shows specificity for
stimulus orientation, SF, and TF. However, these phenomena
seem distinct from ATI in that they require prolonged presenta-
tion of the adapting stimulus, over the course of seconds or
minutes.

Would the channel specificity of ATI contribute to optimiza-
tion of the system for stimulus statistics? If statistics of visual
motion in natural conditions were relatively constant across di-
rections, one might expect an adaptive process that aims to im-
prove sensitivity to be broadly tuned. In effect, the system would
be averaging across the speeds of motion present to arrive at a
single optimal adapted state. However, if motion statistics can
vary substantially across orientation channels, it would be advan-
tageous to have channel-specific tuning as observed here for ATI.
Indeed, there are situations in which motion statistics within a
scene might vary considerably across directions. For example,
self-motion (e.g., running through a forest) makes all things or-
thogonal to the axis of motion move rapidly, but all things nearly
parallel to the motion move slowly. Even in the simplest case of an
object translating across the visual field with constant velocity, v,
a range of TFs are present, simply because TF is a function of the
orientation of components relative to the direction of movement
(TF � v � cos(�) � SF, where � is the angle between v and the
normal to the orientation). Similar reasoning argues for separate
optimization in SF channels, as TF is a function of SF for a trans-
lating pattern. This calls for further work in terms of measuring
statistics of motion across orientation and spatial frequency
channels in natural images, and testing whether channel specific-
ity applies to SF in addition to orientation.

Is ATI an intrinsic result of the spiking nonlinearity?
It is known that apparently adaptive changes can arise through
the interaction of stimulus statistics and nonlinearities (e.g., spike
threshold), without requiring any change in system parameters
over time (Rudd and Brown, 1997; Paninski et al., 2003; Yu and
Lee, 2003; Borst et al., 2005; Yu et al., 2005; Gaudry and Reinagel,
2007; Hong et al., 2008). It was shown that, in both LIF and
Hodgkin-Huxley models, temporal kernels contract with in-
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creased stimulus mean or variance (Yu and Lee, 2003). Increasing
speed of a dynamically moving stimulus could translate to in-
creased variance in the input to a DS cell, leading to an attrac-
tive hypothesis for the generation of ATI. Nevertheless, our
results suggest that this hypothesis cannot hold for macaque
DS neurons.

First, from a single neuron point of view, changes in input
variance or mean will typically correlate with changes in firing
rate (Yu and Lee, 2003). It has already been noted that, in vivo,
STA widths could be different for equal firing rates (Bair and
Movshon, 2004). Here we extend this by showing that, con-
versely, STA width can remain strikingly constant in the face of
significant changes in firing rate caused by the mask (Fig. 3B,C).

Second, we do not observe these effects in simulations using
the spiking population model. For example, for the STAs shown
in Figure 2B, there is minimal change in STA width despite a
more than twofold change in both firing rates and in the variance
of conductances to the DS cell. This is not to imply that the model
proves that there is no scope for the spiking nonlinearity mecha-
nism to set STA width; indeed, presumably a parameter range
exists in which it does. Rather, it demonstrates that in a network
of functioning DS units with physiologically relevant single-cell
properties and connectivity, the temporal integration of the stim-
ulus reflected in the STA can be dominated by other factors,
which in this version of the model includes the temporal filter of
the LGN cells and the temporal window of the DS interaction.

Third, and most tellingly, we have shown that individual DS
neurons can simultaneously show different profiles of temporal
integration for independent visual inputs and that these temporal
profiles are unchanged from those observed when each input is
presented separately. This behavior turns out to be quite unlike
that observed when an LIF model is driven by the sum of two
independent inputs with similar temporal properties. Using an
LIF model (Fig. 8B), we confirmed the previously reported rela-
tionship between input variance and temporal integration (Pan-
inski et al., 2003; Yu and Lee, 2003) for a binary input current and
showed that, when two such independent inputs are combined,
the STAs for each were distinct. However, unlike the experimen-
tal data, both STAs were narrowed. Further, the STA for the lower
variance signal was the broader of the two when presented in
isolation but was the narrower for the combined signal. This final
point is important: regarding the experimental results, one could
speculate that secondary changes, such as a decrease in mean
input level (e.g., through cortical normalization), could offset the
narrowing effect of increased variance for one of the STAs, but
because the low variance signal now has a narrower STA than the
high variance signal, it is impossible for such secondary effects to
restore the original temporal profile of both STAs, as would be
required to reproduce our experimental findings.

Candidate mechanisms of ATI
We have shown that ATI is already present in simple DS cells in
V1, but that it is unlikely to arise from changes in the temporal
integrative properties of cells earlier in the visual processing hi-
erarchy that are untuned for stimulus orientation. Further, it
does not rely on a broadly tuned cortical feedback mechanism,
nor does it arise at the output of DS cells either via an adaptive
mechanism (Sanchez-Vives et al., 2000) or intrinsically through
the interaction of input statistics and spiking nonlinearity. Using
our spiking population model, we have shown that a system
based on parallel channels with different temporal tuning is a
plausible solution.

An alternative is classical adaptation, whereby a system pa-
rameter changes over time, albeit rapidly, in response to changes
in stimulus statistics. However, we cannot envisage how a single
channel could simultaneously support two different kernels, re-
quiring two different adapted states, and thus we are constrained
again to posit a parallel-channel architecture, this time in the
orientation, rather than the TF domain as in our model. This may
not be trivial: it would imply that a DS cell having relatively broad
directional tuning does so, not because it is driven by a single
broadly tuned orientation channel, but because it takes input
from a range of orientation channels. Our model suggests an
experimental paradigm to test specifically for the contribution of
parallel TF or orientation channels (see Results).

Regarding candidates for the adaptive process itself, if there is
one, we have already noted that adaptation within the DS cell
itself, such as spike rate or calcium-dependent adaptation, must
be excluded, unless directional computations and adaptation can
be compartmentalized (e.g., within individual dendrites). This is
not as unlikely as it might at first seem: the capacity of dendrites
to respond nonlinearly according to the spatiotemporal sequence
of input activation has recently been demonstrated (Branco et al.,
2010); and if the fine-scale connectivity exists to yield DS re-
sponses on that basis, then there is no reason to suppose that
different dendrites could not adapt independently. Alternatively,
a model of ATI for stimulus contrast based on synaptic depres-
sion has been suggested (van Rossum et al., 2008). It will be
interesting to explore whether the implementation of such a
mechanism in a DS model can account for our observations.
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Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of tempo-
ral input sequences in cortical neurons. Science 329:1671–1675. CrossRef
Medline

Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling
maximizes information transmission. Neuron 26:695–702. CrossRef
Medline

Burr D, Morrone C, Maffei L (1981) Intra-cortical inhibition prevents sim-
ple cells from responding to textured visual patterns. Exp Brain Res 43:
455– 458. Medline

Busse L, Wade AR, Carandini M (2009) Representation of concurrent stim-
uli by population activity in visual cortex. Neuron 64:931–942. CrossRef
Medline

Carandini M, Heeger DJ (1994) Summation and division by neurons in
primate visual cortex. Science 264:1333–1336. CrossRef Medline

Carandini M, Heeger DJ (2012) Normalization as a canonical neural com-
putation. Nat Rev Neurosci 13:51– 62. CrossRef Medline

Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization
in simple cells of the macaque primary visual cortex. J Neurosci 17:8621–
8644. Medline

McLelland et al. • Mechanisms for Rapid Adaptation in Visual Cortex J. Neurosci., July 15, 2015 • 35(28):10268 –10280 • 10279

http://dx.doi.org/10.1016/S0361–9230(99)00161–6
http://www.ncbi.nlm.nih.gov/pubmed/10643408
http://www.ncbi.nlm.nih.gov/pubmed/3973762
http://dx.doi.org/10.1523/JNEUROSCI.0554–04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15317857
http://dx.doi.org/10.1523/JNEUROSCI.1155–12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22745482
http://dx.doi.org/10.1113/jphysiol.1969.sp008862
http://www.ncbi.nlm.nih.gov/pubmed/5821879
http://dx.doi.org/10.1017/S0952523800004314
http://www.ncbi.nlm.nih.gov/pubmed/2487637
http://dx.doi.org/10.1073/pnas.0500491102
http://www.ncbi.nlm.nih.gov/pubmed/15833815
http://dx.doi.org/10.1126/science.1189664
http://www.ncbi.nlm.nih.gov/pubmed/20705816
http://dx.doi.org/10.1016/S0896–6273(00)81205–2
http://www.ncbi.nlm.nih.gov/pubmed/10896164
http://www.ncbi.nlm.nih.gov/pubmed/7262240
http://dx.doi.org/10.1016/j.neuron.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20064398
http://dx.doi.org/10.1126/science.8191289
http://www.ncbi.nlm.nih.gov/pubmed/8191289
http://dx.doi.org/10.1038/nrc3398
http://www.ncbi.nlm.nih.gov/pubmed/22108672
http://www.ncbi.nlm.nih.gov/pubmed/9334433


Dahmen JC, Keating P, Nodal FR, Schulz AL, King AJ (2010) Adaptation to
stimulus statistics in the perception and neural representation of auditory
space. Neuron 66:937–948. CrossRef Medline

Dean AF, Tolhurst DJ (1986) Factors influencing the temporal phase of
response to bar and grating stimuli for simple cells in the cat striate cortex.
Exp Brain Res 62:143–151. Medline

Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001)
Efficiency and ambiguity in an adaptive neural code. Nature 412:787–792.
CrossRef Medline

Gaudry KS, Reinagel P (2007) Contrast adaptation in a nonadapting LGN
model. J Neurophysiol 98:1287–1296. CrossRef Medline

Gepshtein S, Lesmes LA, Albright TD (2013) Sensory adaptation as optimal
resource allocation. Proc Natl Acad Sci U S A 110:4368 – 4373. CrossRef
Medline
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