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Abstract 34 

The present work focused on the study of fluctuations of cortical activity across time-scales in young 35 
and older healthy adults. The main objective was to offer a comprehensive characterization of the 36 
changes of brain (cortical) signals variability during aging and make the link with known underlying 37 
structural, neurophysiological and functional modifications, as well as aging theories. We analyzed 38 
EEG data of young and elderly adults, which were collected at resting state and during an auditory 39 
odd-ball task. We used a wide battery of metrics that typically are separately applied in the 40 
literature, and we compared them to more specific ones that address their limits. Our procedure 41 
aimed to overcome some of the methodological limitations of earlier studies and verify whether 42 
previous findings can be reproduced and extended to different experimental conditions. In both rest 43 
and task conditions, our results mainly revealed that EEG signals presented systematic age-related 44 
changes that were time-scale dependent with regard to the structure of fluctuations (complexity) but 45 
not with regard to their magnitude. Namely, compared to young adults, the cortical fluctuations of 46 
the elderly were more complex at shorter time-scales, but less complex at longer scales, while always 47 
showing a lower variance. Additionally, the elderly showed signs of spatial as well as between 48 
experimental conditions dedifferentiation. By integrating these so far isolated findings across time 49 
scales, metrics and conditions, the present study offers an overview of age-related changes in the 50 
fluctuations electrocortical activity while making the link with underlying brain dynamics. 51 

 52 

Significance Statement 53 

Recently, the study of brain signals fluctuations is widely put forward as a promising entry point to 54 
characterize brain dynamics in health and disease. While interesting results have been reported 55 
regarding how variability of brain activations can serve as an indicator of performance and 56 
adaptability in elderly, many uncertainties and controversies remain with regard to the 57 
comparability, reproducibility and generality of the described findings, as well as the ensuing 58 
interpretations. Following a systematic investigation of these issues by using a large set of metrics 59 
and different experimental conditions, our results draw an overview of age-related changes of the 60 
magnitude and structure of brain fluctuations, which integrate well with known structural and 61 
functional alterations as well as the main aging theories. 62 

  63 
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Introduction 64 

The view that variability in brain activity serves a functional role is gaining increasing support (Ghosh 65 
et al., 2008; Deco et al., 2009, 2011, 2013; Garrett et al., 2011; Hong and Rebec, 2012). The 66 
characteristics of brain signals fluctuations are considered to capture the underlying complex 67 
interactions between neuronal structures and ensembles. 68 

At rest, the brain displays a complex though spatiotemporally structured dynamics, where brain 69 
states known as resting state networks are intermittently activated. These states are considered to 70 
be functionally meaningful because several of them have been known from task paradigms (Deco et 71 
al., 2013). As underlying mechanisms, within deterministic frameworks, heteroclinic cycles have been 72 
proposed to generate sequential transitions from one unstable equilibrium point (saddle) to another. 73 
Other deterministic approaches soften the requirement of unstable states and require linked 74 
attractive subspaces (see Huys et al 2014). These approaches are subject to noise, which seems to be 75 
pervasive at different levels of the central nervous system (Faisal et al., 2008). However, they do not 76 
necessarily require the latter as a generative element as do those considering that the continually 77 
fluctuating background activity, random or not, drives the multistable system through a cascade of 78 
epochs of invariant, but distinct, coordinated network activities (Hansen et al., 2014). McIntosh et al 79 
(2010) argued that noise is linked to an increased number of functional network configurations that 80 
can be occupied in stochastic systems. This suggests that maturational changes in brain noise 81 
represent an enhancement of the functional network potential, the brain’s dynamic repertoire 82 
(Ghosh et al., 2008). Conversely, the natural process of aging, as well as disease, has been associated 83 
with an evolution towards a poorer dynamics, more local interactions and more regular fluctuations 84 
in brain and behavior (see Garrett et al., 2013; Sleimen-Malkoun et al., 2014, for reviews).  85 

In the ergodic theory framework, entropy has been theoretically demonstrated to be an non-86 
redundant measure of dynamical systems (see Adler and Weiss, 1967; Ornstein and Weiss, 1991). In 87 
empirical data, neuro-behavioral variability is characterized through the magnitude (variance-derived 88 
measures) and the time structure (long-range correlations and entropy-derived metrics, see Bravi, et 89 
al., 2011) of fluctuations. The main operational principle is that the healthy system exhibits complex 90 
fluctuations somewhere at a sweet spot between randomness and regularity. Such resonance-like 91 
phenomena are known as stochastic resonance and have been observed in biological systems 92 
including brain networks (Gammaitoni et al., 1998; Deco et al., 2009; McDonnell and Abbott, 2009; 93 
McDonnell and Ward, 2011). Nevertheless, most of the widely used measures cannot distinguish 94 
between deterministic and stochastic components of the dynamics. Entropy measures, for instance, 95 
are relevant for comparisons between different conditions (e.g., resting vs. task) or systems (e.g., 96 
young vs. old), assuming conventionally that more entropy corresponds to more complexity 97 
(Feldman and Crutchfield, 1998). Sensu stricto, this latter assumption is not always correct, at least 98 
not with single-scale measures (Costa et al., 2002, 2005). 99 

In fMRI studies, variance based measures (Grady and Garrett, 2014) as well as entropy measures (Liu 100 
et al., 2013; Sokunbi, 2014) have been shown to be relevant to characterize and understand the 101 
dynamics of the aging brain. In this context, multiscale analyses have also been used (Yang et al., 102 
2013; Smith et al., 2014), although, their contribution is restricted due to the limited range of 103 
functionally meaningful scales that can be covered. Such measures are of more interest in signals 104 
with higher time resolution, as EEG and MEG recordings, where time-scale dependence of aging 105 
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effects can be revealed (McIntosh et al., 2013). Nevertheless, notwithstanding a number of 106 
converging findings showing that aging does affect the variability of brain activity, no final 107 
conclusions can be made yet concerning the nature of such changes or their link with functional and 108 
adaptive capabilities. The present study makes a helpful step in this direction by offering a consistent 109 
and coherent characterization of EEG signals in young and older adults through a multiplicity of 110 
metrics applied to both resting and task conditions. Specifically, it investigates the following: i) the 111 
type of information that can (or cannot) be captured by the (univariate) metrics that are 112 
conventionally used to characterize brain signals; ii) the distinction between multiscale changes in 113 
the magnitude of fluctuations and their structure in time; iii) the correspondences between different 114 
classes of metrics with regard to age-related modifications in brain activity; iv) the comparability 115 
between aging effects on resting and task-evoked brain fluctuations; v) the extent to which changes 116 
in brain fluctuations can be linked to structural and functional changes occurring in the aging brain. 117 

 118 

Methods 119 

Participants 120 

Participants were recruited through announcements at schools in Saarland and at the Saarland 121 
University. They received a compensation of 7.5 Euro per hour. All the participants were right-122 
handed, had no reported history of head or neurological disorders, and none were on medication. 123 
The studied sample consisted of 31 young (‘Y’, mean age = 22.7, SD = 1.6, age range = 18.8–25.1 124 
years, 14 females), and 28 old adults (‘O’, mean age = 67.8, SD = 3.0, age range = 63.9–74.5 years, 14 125 
females). Participants of all ages were able to sustain their attention for the entire duration of the 126 
experiment, and they all underwent a psychological and audiological assessment prior to their 127 
enrollment. The used protocol was in accordance with the regulation of local ethic committee. All 128 
participants volunteered for this experiment and gave their written informed consent prior to their 129 
inclusion in the study. 130 

Procedure 131 

The EEG measurement began with a 3-minute resting state recording (1.5 minutes with eyes closed, 132 
and 1.5 minutes with eyes open) and was followed by the auditory oddball task. During the task, 133 
participants were seated comfortably on a chair in an electrically shielded room, with their eyes 134 
closed. They heard two different tone beeps: a frequent 1000 Hz tone as a standard stimulus and a 135 
rare 800 Hz tone as a deviant stimulus. The standard and deviant stimuli were presented binaurally 136 
(with a probability of 0.8 and 0.2 for standard and deviant, respectively) through headphones (Sony 137 
DJMDR-V300) at 70 dB SPL with duration of 70 ms (including 10-ms rise and fall time). Stimuli were 138 
generated with the software Audacity 1.2.4. The inter-stimulus interval ranged from 1200 to 1500 139 
ms. There were two different experimental conditions: passive listening (unattended) and active 140 
counting (attended). In the first condition, participants merely listened to the tone beeps without any 141 
response, whereas in the second condition, they had to attend to stimuli and to count the deviant 142 
tones. After the session, they were asked to report their counting results. Each experimental 143 
condition contained 152 standard tones and 38 deviant tones presented in a pseudo-random order 144 
fixed for all participants. The order of the conditions was always the same, with the active counting 145 
condition following the passive listening condition. For this study we considered three conditions, all 146 
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with eyes closed:  resting state (‘R’), auditory oddball task without counting (‘OnC’) and auditory 147 
oddball with counting (‘OC’). The condition of resting state with eyes open was not included since it 148 
differed largely in its frequency content compared to all other conditions, which interfered with tasks 149 
contrasts. Instead, we focused on studying differences under comparable conditions along the axis of 150 
increasing attentional and task demands. 151 

EEG recordings and preprocessing 152 

The electroencephalogram (EEG) was recorded from 58 Ag/AgCl electrodes using an elastic cap 153 
(Electrocap International), with a sampling rate of 500 Hz in a frequency band ranging from 0.5 to 154 
100 Hz. The left mastoid was used as a reference and the right mastoid was recorded as an active 155 
channel. The data were re-referenced off-line to an average of the left and right mastoids for further 156 
analysis. The electrodes were placed according to the international 10–10 system. Vertical and 157 
horizontal electrooculogram (EOG) was recorded for control of eye blinks and eye movements. Eye 158 
movement correction was accomplished by independent component analysis (Vigario, 1977). 159 
Thereafter, artifacts from head and body movements were rejected by visual inspection. Finally, data 160 
were downsampled to a sampling rate of 250 Hz, segmented in artifact free 10 s segments (i.e., 161 
comprising Nt = 2500 data points each), and mean centered within segments before further analysis. 162 
Accordingly, we insured to have continuous time-series of equal length for all three experimental 163 
conditions, on which multiscale analyses can be reliably applied. For the two task conditions, 164 
segments corresponded to time intervals containing a comparable number of stimuli (7-8). Table I 165 
shows the statistics of the resulting number of segments included in the analysis for each condition 166 
and group.  167 

Metrics 168 

Multiple metrics were applied to all data segments using MATLAB (The Mathworks Inc.) or Python 169 
scripts for all calculations. We computed: the power spectrum, the spectral degrees of freedom, the 170 
detrended fluctuation analysis, the variogram and several measures related to multiscale entropy. In 171 
general, all of these metrics relate in some way to the autocorrelation properties of the signals. 172 
However, it should be noted that neither a straightforward relationship amongst metrics, nor a direct 173 
correspondence between time scales and frequencies exist. On the one hand, the entropic measures 174 
and detrended fluctuation analysis capture nonlinear correlations in addition to linear ones, but it is 175 
not the case for the variogram and the power spectrum. On the other hand, the detrending and the 176 
coarse graining procedures (for entropic measures) transform the data in ways that make such direct 177 
correspondence impossible. In the following, we present the different metrics. 178 

Power spectrum (P). For the calculation of the power spectrum, we applied a Hanning window of Nt = 179 
2500 points to each data segment. Then, after padding with trailing zeros, a 4096 point Fast Fourier 180 
Transform (using the MATLAB function fft.m) resulted in the complex signal in the frequency domain 181 ܺ(݇) =  ቀݔ(݆)݁൫ିଶగ ே⁄ ൯(ିଵ)(ିଵ)ቁேୀଵ , where ݔ is the signal in the time domain, ܰ = 4096 and 182 

indices j and k run through points in the time and frequency domain, respectively. Then, the power 183 
spectrum was calculated for positive frequencies as ܲ(݇) =  ܺ(݇)ܺ(݇)∗, where the operator * 184 
signifies the conjugate complex number. 185 
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Degrees of freedom (DoF). Spectral DoF is a statistic that evaluates the uniformity of spectral density 186 

(Vaillancourt and Newell, 2003). It is calculated as ܨܦ = ቀ∑ ܲ(݇)ே ቁଶ ଵே ∑ ܲ(݇)ଶே൘ , where ܲ and 187 

k are as above and ܰ is the number of positive frequencies. DoF ranges from ଵே for a single peak 188 

spectral density to 1 for a completely flat one, i.e., for white noise. 189 

Detrended fluctuation analysis (DFA) and generalized Hurst exponent (H). Detrended fluctuation 190 
analysis was introduced in (Peng et al., 1994) in order to extent Hurst’s Rescaled Range Analysis 191 
(Hurst, 1951) for the evaluation of long-range time correlations in non-stationary signals. Its 192 
suitability for non-stationary signals has been questioned recently (Bryce and Sprague, 2012). 193 
However, it is widely used in different domains and has found many applications in biology (see 194 
Hardstone et al., 2012 for applications in EEG). We calculated DFA along the following steps: 195 

1. We calculated the cumulative sum of each segment’s time series after removal of its mean: 196 ݕ(݆) = ∑ ൫ݔ(݆) −   ∑ ே(݆)ݔ  ௧ܰൗ ൯ଵ , where all symbols follow the above presented notation. 197 
2. For a particular time-scale T(s), with scale s = 4…50, and T = 16…200 ms in steps of 4 ms, we 198 

segmented the time series into adjacent (non-overlapping) windows yws of a length of Nw(s) 199 
samples. Thus, the number of windows W(s) ranged as W = 625…50, and the number of 200 
samples per window as Nw = 4…50, respectively. 201 

3. For each scale s we calculated the average fluctuation across all windows as the average 202 
root-mean-square error of a polynomial fit of second order (i.e., it corresponds to removal of 203 
linear trends): 204 F(s) =  ቆ∑ ට1 N୵(s) ቀ∑ ൫y୵ୱ(m) − (aଶmଶ + aଵm + a)൯ଶ౭(ୱ)୫ ቁൗ(ୱ)ୱ ቇ W(s)ൗ , 205 

where a0-2 are the coefficients of the polynomial fit, and m is the index of all samples within a 206 
window. We used the MATLAB functions polyfit.m and polyval.m for the calculations of the 207 
polynomial coefficients and fitting, respectively. 208 

4. Fluctuations were plotted against time-scales in a ln T(s) − ln F(s) plot and a generalization 209 
of the Hurst exponent, H, was calculated as the slope of the linear fit (using polyfit in 210 
MATLAB) of the resulting curve for time scales T in the range 24 – 124 msec. This range was 211 
chosen after visual inspection for linear scaling of randomly chosen data segments as well as 212 
of the groups’ mean curves for each condition. Finally, we compared both ln F(s) and H 213 
across groups and conditions. 214 

H is indicative of the autocorrelation structure of a signal as follows: (a) for 0<H<0.5, negative 215 
correlation (anti-correlation), (b) for H≈0.5, lack of any correlation, i.e., white noise, (c) for 0.5<H<1, 216 
positive correlation, (d) for H≈1, 1/f or pink noise, (e) for 1<H<2, non-stationarity, (f) for H≈1.5, 217 
brown noise. The Hurst exponent is equal to H for H<1 and to H-1 for H>1 (Hardstone et al., 2012). 218 

Variogram (V). The variogram is an alternative way to evaluate how the magnitude of variability of a 219 
signal varies for different time-scales (Cressie, 1993). However, until present its use has been limited 220 
in neurosciences (see Conte et al., 2009, for an example). It has the advantage over variance in that it 221 
can be calculated for stochastic processes for which the mean is either undefined, i.e., when the 222 
related probability distribution function decays according to a power law with an exponent lower or 223 
equal to 1, or when it is hard to empirically observe, i.e., in the cases of a very large autocorrelation 224 

time. It was calculated as: ܸ(ݏ) = ଵேೞ ቀ∑ ൫ݔ(݆) − ݆)ݔ + ൯ଶேೞ(ݏ ቁ, where ௦ܰ is the number of distinct 225 

pairs of time points ݔ(݆) and ݔ(݆ +  samples, in the range s = 1…50, which 226 ݏ of a distance of (ݏ
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corresponds to time-scales ܶ(ݏ) in the range of 4-200 msec. Finally, we compared lnܸ(ݏ) among 227 
groups and conditions. 228 

Multiscale entropy measures. We calculated multiscale entropy using two different estimators: 229 
sample entropy (SampEn, Richman and Moorman, 2000), giving multiscale sample entropy (MSE), 230 
and Lempel-Ziv complexity (LZ, Lempel and Ziv, 1976), yielding multiscale Lempel-Ziv entropy (MLZ). 231 
In order to improve the interpretability of our results, we also estimated a normalized version of 232 
each, i.e., MSEn and MLZn (see below). 233 

Multiscale sample entropy (MSE) was introduced by Costa et al. (2002, 2005) to evaluate the 234 
complexity of physio-biological signals such as heart rate, i.e., the degree to which long-range 235 
correlations exist in such signals. The MSE algorithm combines the calculation of SampEn with a 236 
coarse graining procedure, acting similar, albeit not identical, to a low pass filter, thereby precluding 237 
a one-to-one comparison between time-scales and frequency content of the signal. SampEn is an 238 
improved version of the approximate entropy algorithm (Pincus, 1991), which.  have been designed 239 
to approximate the so called Kolmogorov-Sinai entropy of dynamical systems (that quantifies the 240 
global temporal organization of time series and provides a meaningful index for discriminating 241 
between various dynamic systems), or the metric entropy or mean entropy rate of stochastic 242 
processes (that is the rate with which such processes create new information), for time series of 243 
relatively short length, as it is usually the case in biology. In short, we calculated MSE along the 244 
following steps: 245 

1. For a particular time-scale T(s), with scale s = 1…50, and T = 4…200 ms in steps of 4 ms, we 246 
segmented the time series ݔ(݆) into adjacent (non-overlapping) windows yws of a length of 247 
Nw(s) samples. Thus the number of windows W(s) ranged as W = 2500…50, and the number 248 
of samples per window as Nw = 1…50, respectively. 249 

2. We averaged all points within each window yws to generate new time series ݖ௪௦ =250 1 ܰ௪(ݏ)ൗ ∑ ௪௦(݆)ேೢ(௦)ୀଵݕ  for each scale s. 251 

3. Then, SampEn was calculated for each of the ݖ௪௦ time series, resulting in a SampEn value for 252 
each scale, as (ݏ)ܧܵܯ = − ln(ܰ(݉ + 1) ܰ(݉)⁄ ), where ܰ(݉) is the number of all possible 253 
sequences of m points in ݖ௪௦ that are closer to each other than a distance r, i.e., where 254 (|ݖ௪௦(݅) − |(݆)௪௦ݖ < (ݎ ∩ ݅)௪௦ݖ|) + 1) − ݆)௪௦ݖ + 1)| < (ݎ ∩ … ∩ ݅)௪௦ݖ|) + ݉ − 1) ݆)௪௦ݖ 255− + ݉ − 1)| < ݅ and (ݎ < ݆ (no self-matches are counted). Thus, SampEn evaluates the 256 
percentage of similar sequences of m points that are still similar (in terms of distance) when 257 
the next point, i.e., the m+1, is added to the sequence. In all our calculations we set m=2 and 258 
r as 50% of the standard deviation of the original signal ݔ(݆), i.e., at scale 1. 259 

However, the SampEn algorithm has not been analytically proven to converge towards metric 260 
entropy and requires a preliminary setting of the parameter m that could lead to an under-261 
estimation if set inappropriately. We therefore also tested the Lempel-Ziv (LZ) complexity, which is 262 
an adaptive entropy estimator. In addition of being parameter-free, it was shown to be reliable even 263 
for short sequences of a few hundreds of symbols (Lesne et al., 2009). We used the same procedure 264 
as described above but, at step 3, we calculated LZ instead of SampEn. In the LZ compression 265 
algorithm, a symbolic sequence of length Ns is parsed recursively into words, considering as a new 266 
word the shortest one that has not yet been encountered. For instance, in a binary example the 267 
sequence 100110111001010001011 ... is parsed according to 1 . 0 . 01 . 10 . 11 . 100 . 101 . 00 . 010 . 268 
11 … . One then computes ܼܮ = ܰ௪(1 + log ܰ௪) ௦ܰ⁄ , where Nw is the number of words used and k 269 
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is the number of symbols in the ‘alphabet’. Under the assumption that the source is stationary and 270 
ergodic (assumptions that apply to the SampEn estimator as well), Lempel-Ziv theorems ensure that 271 
LZ coincides with the entropy rate up to a factor log ݇ with limே→ஶ ܼܮ = ℎ log ݇⁄ , where h 272 
corresponds to metric entropy. We used an equi-quantization procedure (Hlavackovaschindler et al., 273 
2007) to convert signals into symbolic sequences by partitioning them into 4 bins (k=4). The bin size 274 
was inversely proportional to the distribution of the amplitude values of EEG, such that the number 275 
of values was the same in all bins. 276 

MSE curves have been shown to be highly influenced by the effect of the coarse graining procedure 277 
on the standard deviation at each scale (see Nikulin and Brismar, 2004). Therefore, we also 278 
calculated the standard deviation across scales (SD(s)) (i.e., after coarse graining) as well as MSEn(s), 279 
for which we set a different threshold r(s) for each scale that was equal to 50% of SD(s) (i.e., relative 280 
to the standard deviation of the coarse grained signal z୵ୱ). This normalization was also applied to 281 
MLZ by applying at each scale a new grid, adjusted to the variance of the coarse-grained signal. 282 

 283 

Partial Least Squares (PLS) statistical analysis 284 

We used ‘contrast’ or ‘non-rotated task PLS’ (as implemented in MATLAB by McIntosh and Lobaugh, 285 
2004; see also Krishnan et al., 2011 for updated information) to test the main effects of groups and 286 
conditions differences. In a nutshell, contrast task PLS is a multivariate statistical method that is 287 
suitable for testing hypotheses about spatial and/or time distributed signal changes by combining 288 
information across the different signal dimensions (in our case channels and time-scales or 289 
frequencies). PLS addresses both the problem of multiple comparisons for statistical significance and 290 
of that of element-wise reliability via a permutation test and a bootstrap resampling test, 291 
respectively. A task PLS analysis with Ng groups and Nc conditions starts with a data matrix for each 292 
group and a contrast matrix of maximally Ng*Nc-1 (as many as the degrees of freedom) orthonormal 293 
contrasts that represent the hypotheses to be tested.  The rows of each data matrix contain a 294 
metric’s data points or elements of participants within conditions, which in our case were a metric’s 295 
values for all channel and time-scale or frequency combinations. From those two matrices, a 296 
covariance matrix is calculated that contains the covariance of each orthonormal contrast with each 297 
element across participants. This matrix is subjected to singular value decomposition (SVD) resulting 298 
in three matrices: i) the orthonormal matrix of the saliences of the contrasts (as determined by the 299 
initial contrast matrix) i.e., it contains the task (or design) latent variables that describe the relations 300 
among the conditions and groups of our design; ii) the orthonormal matrix of element saliences that 301 
are proportional to the covariance of each metrics’ element with each one of the task contrasts, i.e., 302 
it describes the so-called brain latent variables; and iii) the diagonal matrix of singular values that are 303 
indicative of the variance explained by each contrast. Then, a permutation test on the singular 304 
values, with resampling of the initial data matrices, results in a p-value for each contrast tested. 305 
Finally, a bootstrap test with resampling of the initial data matrices, with replacement within 306 
conditions and groups, results in statistical reliability estimations of each element of both the task 307 
and the brain latent variables within a chosen level of confidence. Thus, the bootstrap test controls 308 
for the robustness of the results among participants. For the task latent variables, we plotted 309 
intervals of 95% confidence. Conditions with non-overlapping intervals are robustly distinguished by 310 
the respective contrast. For the brain latent variables, we calculated bootstrap ratios by dividing each 311 
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element with its standard error as calculated by the corresponding bootstrap sample distribution. 312 
Bootstrap ratios greater than 2.5758 approximate the 99th two-tailed percentile for a particular 313 
element. Regarding the Statistical Table (Table II), we calculated the Agresti-Coull 95% confidence 314 
intervals for the p-value of all permutation tests, assuming a binomial distribution for the probability 315 
that a permutation sample will lead to a larger eigenvalue than the observed one (Brown et al., 316 
2001), whereas for the bootstrap tests we direct the reader to the corresponding figures, where the 317 
confidence intervals of the task latent variables and the bootstrap ratios of the brain latent variables 318 
are depicted.  319 

In our design, we had two groups (i.e., Ng = 2), namely young (‘Y’) and old (‘O’) participants, and three 320 
conditions (Nc = 3), i.e., ‘R’, ‘OnC’ and ‘OC’ as explained above. We tested two orthogonal contrasts. 321 
The weights for the first one before normalization were set to 1 for ‘Y’-‘Rest’, ‘Y’-‘OnC’ and ‘Y’-‘OC’ 322 
and to -1 for ‘O-‘R’, ‘O’-‘OnC’ and ‘O’-‘OC’, i.e., the main group effect (‘Y’ - ‘O’). Similarly, the weights 323 
for the second contrast were set to 1 for ‘Y’-‘R’ and ‘O’-‘Rest’, 0 for ‘Y’-‘OnC’ and ‘O’-‘OnC’ and -1 for 324 
‘Y’-‘OC’ and ‘O’-‘OC’, i.e., the main effect of conditions that orders them from the task requiring the 325 
least attention and effort (‘Rest’) to the one demanding the most (‘OC’). Our choices for these 326 
contrasts were hypotheses driven, and as such they have clear interpretations. However, they were 327 
also justified to a large degree in terms of the amount of variance in our data that they actually 328 
explain. We confirmed this by running an alternative explorative version of task PLS, namely a ‘mean-329 
centering task PLS’. Following this version of the method, not only the brain latent variables but also 330 
the task ones are allowed to “rotate” during the SVD of the mean-centered and concatenated auto-331 
covariance matrix of the initial group data matrices, in order to explain as much variance of the data 332 
as possible (always under the constraint of orthogonality; see (McIntosh and Lobaugh, 2004) for a 333 
detailed description of the method). For all metrics, the first two latent variables of the mean-334 
centering task PLS corresponded to contrasts similar (albeit not identical) to the ones we tested 335 
(group and condition main effects), and explained approximately 77-99% and 1-15% of the total 336 
variance, respectively, and 88-99% in sum. 337 

Results 338 

To give the reader an intuition on the metrics and their comparability, as well as some guidance in 339 
the interpretation of the results, we illustrate in Figure 1 and 2 representative EEG traces and their 340 
respective metrics curves. Figure 1, left column, depicts randomly selected data segments from two 341 
participants, one young and one old, for the resting state – requiring the least attention-- and the 342 
Oddball counting – requiring the most attention – conditions. In the right column of Figure 1, the 343 
corresponding power spectra (P) and the associated DoF are shown. The results of the respective 344 
mutliscale metrics are presented in Figure 2. In the following we report the observed effects with 345 
respect to aging and experimental conditions for all the different metrics. 346 

Between group differences: aging effects 347 

We first investigated group differences between young and old participants by performing a separate 348 
contrast task PLS analysis for each metric for the main effect “Y” – “O”. Group differences can be 349 
inspected in Figures 3 and 4, where the mean values with standard error intervals are depicted. The 350 
Cz electrode was chosen to visualize mean differences since oddball responses are well represented 351 
by the central electrodes (see for instance Müller et al., 2008, 2009), and generally Cz is less affected 352 
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by muscle artifacts. The permutation tests showed that the contrast was significant for all metrics (p 353 
< 0.001, except for MSE, for which p = 0.002). These effects were to a large degree homogeneous 354 
among conditions (albeit not identical), and statistically reliable according to the bootstrap tests as 355 
shown in Figure 3. In the following we describe the main patterns of the results via the mean and 356 
standard error intervals (Figures 3 and 4), and the bootstrap ratios of the brain latent variables 357 
(Figures 6-8). As regards the magnitude of variability metrics (see Figures 3 and 6), it can be seen that 358 
the young participants had reliably more power (P) at frequencies below 12 Hz (with the exception of 359 
a narrow band around 8 Hz), as well as a larger magnitude of detrended fluctuations (ln(F)), variance 360 
(ln(V)) and standard deviation (SD). The effects of the last 3 metrics were generally reliable across 361 
channels and scales, although they were the strongest for the parieto-occipital channels and longer 362 
time-scales. As for the metrics that evaluate the structure of EEG variability across time-scales 363 
(Figures 4, 7 and 8), the elderly’s degrees of freedom of all channels’ power spectra were larger than 364 
that of the young participants, i.e., the former’s spectra were flatter. Moreover, the DoFs were the 365 
highest for the anterior channels as well as for the lateral ones, which were also noisier (see Figure 366 
4). Figures 4 and 7 also show that the magnitude of the detrended fluctuations coincided with a 367 
larger Hurst exponent for young participants than for the older. On average, H was around 1.5 for 368 
older participants and 1.7 for the young one (Figure 3). In both groups, H values were the highest for 369 
more posterior as well as midline (and also less noisy) channels. With respect to the entropic metrics 370 
(Figure 8), relative to the young participants, entropy was higher for the older participants at time-371 
scales shorter than 24 ms, and lower at longer scales from this point on. Exemplified in Figure 4, the 372 
MSE curves of channel Cz across all conditions show a crossing point. The effect below the crossing 373 
point (i.e., higher entropy for the old participants for short time-scales) was slightly stronger at the 374 
parieto-occipital channels, whereas the effect above the crossing point (i.e., higher entropy for the 375 
young participants for long time-scales) was stronger at the fronto-central channels, and was present 376 
at least up to the scale of 80 ms (Figure 8). After normalizing for the standard deviation at each scale 377 
after coarse graining, the resulting MSEn also showed group differences, but in this case mainly so for 378 
time-scales lower than 32 ms, where SampEn was higher for old participants. In contrast, the 379 
differences between groups for longer time-scales were not as strong. Results were similar for the 380 
Lempel-Ziv entropy metrics (MLZ and MLZn)shown in Figures 4 and 8. However, effects were 381 
statistically weaker than for MSE, and the crossing point tended to be one scale shorter for MLZ, i.e., 382 
at 20 ms, and one scale longer for MLZn, i.e., at 36 ms. 383 

In summary, the metrics that primarily evaluate the magnitude of variability across scales (the power 384 
spectrum, the detrended fluctuations’ amplitude, the variogram and the standard deviation), 385 
indicated that the young participants exhibited larger fluctuations, mainly so for low frequencies, 386 
long time-scales, and for the posterior channels. Inversely, entropy differences between groups 387 
reversed at the scale of 20-24 ms, and showed higher entropy for old (young) participants at shorter 388 
(longer) time-scales, mainly so for posterior (anterior) channels, respectively. Normalizing for the 389 
standard deviation after coarse graining substantially weakened the effect at the long time-scales. 390 
The generalized Hurst exponent, as a metric of complexity (or structure in the variability), was in 391 
accordance with the SampEn at long-scales, which was higher for the young participants, whereas 392 
the more DoF of the old participants was to be expected given their “flatter” power spectrum, 393 
especially for the lower frequencies below 12 Hz.  394 

Effects of experimental conditions 395 
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We next tested for the main effect of condition, mainly contrasting resting state (‘R’) and oddball 396 
counting (‘OC’), as the oddball no-counting (‘OnC’) was placed in the middle. The permutation test 397 
showed that the contrast was significant with p < 0.001 for P, ln(V), SD, ln(F), and MSE, and with p = 398 
0.002 for MSEn, p = 0.069 for MLZ, and p = 0.005 for MLZn. The contrast was not significant for DoF 399 
and H (p > 0.1). Notably, the contrast for condition explained much less variance in our data than that 400 
for group, which was revealed by comparing the singular values of the condition contrast for each 401 
metric in Figure 8 with the corresponding ones for the group contrast in Figure 5 (the latter were 402 
much larger). As further illustrated in Figure 8, the bootstrap test showed that for P, ln(V), SD, and 403 
ln(F) the three conditions could not be separated reliably with a confidence of 95% (the respective 404 
confidence intervals around the weights of the task latent variables were largely overlapping). 405 
Instead, for the entropic metrics (MSE, MSEn, MLZ, and MLZn) ‘R’ was generally reliably separated 406 
from the task conditions (‘OC’ and ‘OnC’), which was more clearly so for young participants. In order 407 
to evaluate the statistically reliable effects as well as the statistically un- or less reliable tendencies, 408 
we here present the brain latent variables for all metrics (Figures 10 and 11). As for the metrics of 409 
the magnitude of variability, ln(V) and ln(F) were generally higher for the resting condition across all 410 
scales and channels, but particularly so for parieto-occipital channels. The SD was higher also for ‘R’ 411 
at time scales up to 100 ms, also particularly for the posterior channels. Regarding P, ‘R’ had more 412 
power in the 5-10 Hz and 15-30 Hz frequency intervals than the task conditions, whereas ‘OC’ had 413 
more power in the delta band (i.e., 1-4 Hz), particularly so for fronto-central channels. Regarding the 414 
entropic metrics shown in Figure 11, MSE was higher (lower) for ‘R’ than for ‘OC’ for time-scales 415 
shorter (longer) than 44-48 ms, respectively. The effect below those scales was stronger for the 416 
fronto-central channels. The result for MLZ was very similar for short-scales, but was statistically 417 
weaker, and with the crossing point moving at shorter scales (32-36 ms). However, above the 418 
crossing point, i.e., for long time-scales, the effect was practically lost. In addition, MSEn and MLZn 419 
were generally higher for ‘R’ across all scales, mainly so for the fronto-central channels. This effect 420 
was statistically much stronger for the time-scales lower than 56 ms and, more generally, for MSEn 421 
as compared to MLZn.  422 

In summary, the resting state resulted generally in larger fluctuations (except for the standard 423 
deviation at long time scales and power at the delta band at the frontal channels). Moreover, the 424 
resting condition exhibited higher (lower) entropy than the task condition with counting (‘OC’) at 425 
short (long) time-scales, respectively. However, after normalizing for the standard deviation at each 426 
scale after coarse graining, this effect tended to reverse for long time-scales. It is worth noticing that 427 
the patterns of results for P and MSE, as well as for MSEn, MLZ, and MLZn, at short scales only for the 428 
last 3, were to a large degree inverse to those of the group main effect, i.e., the results for the 429 
attentive task (rest) condition followed the ones for the young (old) participants. This rough 430 
correspondence, however, reversed for the rest of the metrics, i.e., ln(V), SD, and ln(F). 431 

 432 

Discussion 433 

The present study investigates the changes of cortical dynamics with aging through the use of a 434 
battery of multiscale metrics, which allows that characterize the structure and the magnitude of EEG 435 
fluctuations. 436 
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Age-related differences in the magnitude of EEG signals variability across time-scales 437 

Our results show that the cortical activity of older participants displayed smaller fluctuations than 438 
young participants in a (close to) scale-independent manner. Consistent with previous studies (e.g., 439 
Dustman et al., 1993, 1999; Gaal et al., 2010; Müller and Lindenberger, 2012), EEG signals of the 440 
elderly generally contained less spectral power than that of the young adults. Similarly, the DFA, SD, 441 
and Variogram results also indicated a decrease in the fluctuations’ magnitude with aging. While, to 442 
our knowledge, this aspect of brain signal variability has never been explicitly addressed before in 443 
EEG recordings, it is in line with recent fMRI studies (Garrett et al., 2012, 2013), where older adults 444 
were found to display a reduction of SD BOLD signals in most brain areas (especially cortical) in both 445 
resting and task-driven states (Garrett et al., 2011, 2012). Our study extends these observations to 446 
scalp EEG and shows that it is indeed a pervasive characteristic of the aging brain across time-scales.  447 

Effects of aging on the organization of cortical fluctuations across time-scales 448 

In the frequency domain, older adults showed flatter power spectra with a lower alpha peak, and 449 
more spectral DoF, suggestive of increased ‘broadband’ noisiness of the cortical activity. Further, 450 
long range autocorrelations were less present in older participants’ data (higher H exponent). The 451 
multiscale entropy metrics revealed a time-scale dependence of aging effects regardless of the used 452 
estimator (SampEn or LZ) with the elderly’s EEG signals being more irregular at fine/shorter-scales, 453 
and less complex at coarser/longer scales. Thus, young and old brains appear to operate at different 454 
time constants making them, under the effect of coarse graining, reach maximal entropy at different 455 
time-scales. After reaching their respective peak, both young and older adults’ MSE/MLZ curves 456 
decreased; however, those of the young remained significantly higher. This loss of complexity across 457 
the long scales may be indicative of a diminished global information integration with aging, since 458 
these scales relate mostly to low frequency oscillations mediating long-range interactions. Mind, 459 
however, that the inverse does not directly apply, because the short scales enclose information 460 
about both high and low frequency oscillations. Furthermore, it is known also that (multiscale) 461 
entropy-based measures reflect both variance and correlation properties of time series (Costa et al., 462 
2002, 2005). To extract variance-related changes, we compared the multiscale entropy curves (MSE, 463 
MLZ) with their normalized versions (MSEn, MLZn) and the SD curves. A crossing-over was present 464 
for the entropy metrics (regardless of the normalization), but not for SD, for which young and 465 
elderly’s curves were parallel. It is notable however, that, although the age-groups differences in 466 
entropy remained mostly significant after normalization, they were substantially weakened. The 467 
normalization affected essentially the part of MSE/MLZ curves after the peak that contains the scales 468 
accounting for the auto-correlated (low frequencies) content of the signal, which actually contain the 469 
most power (roughly below 20Hz).  470 

The above results are in accordance with the current literature, and extend it with several new 471 
findings. First, we reproduced McIntosh et al.’s (2013) results and extended them to longer time-472 
scales, as well as to resting state activity. For the first time-scale, our findings (i.e., more irregularity 473 
for older adults) are consistent with those of other EEG studies using single-scale measures of 474 
complexity (Anokhin et al. 1996; Pierce et al. 2000, 2003; Müller and Lindenberger 2012). Conversely, 475 
our observations at longer scales approximate the observations of fMRI studies, in which the time 476 
resolution is much lower than in EEG. Indeed, fMRI investigations at resting state have also shown a 477 
loss of entropy with aging (Yang et al., 2013; Smith et al., 2014; Sokunbi, 2014). 478 
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Overall, we show that aging effects on cortical fluctuations are time-scale dependent with regard to 479 
structure (i.e., less regular fluctuations at shorter scales and less complex fluctuations at longer 480 
scales), but not in terms of magnitude (i.e., a systematic reduction regardless of the time-scale). 481 

Spatial patterns of variability changes with aging 482 

The observed aging effects on EEG variability were rather robust for almost all channels. 483 
Nevertheless, some spatial patterns showing stronger effects for certain electrodes were 484 
distinguishable over the scalp. Notably, the posterior channels were found to display the highest 485 
young-old differences in terms of variability magnitude (across all scales), with the younger adults 486 
being furthermore variable than the elderly for these regions. This was also the case for the power 487 
spectrum, the variogram, and the DFA analyses. This spatial pattern of age-related differences in 488 
terms of fluctuations magnitude is consistent with the observation that young adults have more 489 
power in most of the frequency bands at the posterior areas (seen in our results, and previously 490 
reported in Gaal et al., 2010). Conversely, entropy-wise, young-old differences for the longer/coarser 491 
scales were stronger at the fronto-central channels, because EEG signals of the younger participants 492 
were more complex for these channels than for the occipital ones. 493 

These results suggest that the detected anterio-posterior difference in the magnitude of group 494 
effects stems from a fronto-occipital differentiation expressed only in the younger adults’ brains. This 495 
interpretation corroborates the view of spatial dedifferentiation in the aged brain, as shown for 496 
instance in Garrett et al.’s (2012, 2013) studies, wherein older adults were found to exhibit low and 497 
nearly indistinguishable levels of variability across brain structures in both resting and task-driven 498 
states.  499 

Differences between experimental conditions 500 

The differences between resting and the auditory stimuli conditions (with and without counting) 501 
followed a similar pattern across metrics, with the contrast driven mainly by the difference between 502 
resting state and the cognitively most demanding oddball counting task. However, this distinction 503 
could only be made reliably through MSE, and more consistently so for young participants. The 504 
limited change between rest and task situations might be related to the fact that in all experimental 505 
conditions participants were instructed to keep their eyes closed. Eyes opening was indeed shown to 506 
significantly affect brain signals complexity elsewhere (see Hogan et al., 2012; Müller and 507 
Lindenberger, 2012), as was also found in our preliminary analysis including the eyes-open condition. 508 
In addition, the cognitive task we used is not very demanding. With respect to MSE, the pattern of 509 
difference between the resting (least demanding) and oddball counting (most demanding) condition 510 
resembled the one differentiating the age groups (old vs. young): the EEG of the less demanding task 511 
was more complex at shorter scales. A stronger difference was found for the fronto-central channels, 512 
most likely due to the attentional load imposed by the task. This difference was reversed at longer 513 
scales where the ‘OdC’ condition yielded the most entropic signals. To our best knowledge, this is the 514 
first time a specific MSE pattern with obvious time-scale dependence is shown to differentiate 515 
between brain states at different cognitive loads. Nevertheless, the low differentiability between 516 
conditions in elderly has been reported earlier and seems to be one of the general signatures 517 
characterizing the senescent brain (cf., Garrett et al. 2012). This lack of specificity in the aged brain 518 
manifests itself thus, both through a spatial (within experimental condition, as shown in the section 519 
before) and a ‘states’ (between conditions) dedifferentiation. 520 
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Convergence of aging theories and empirical findings 521 

The dedifferentiation hypothesis initially introduced by Baltes and Lindenberger (1997) is repeatedly 522 
referred to in the literature to describe and explain cognitive declines with advanced age (see Park 523 
and Reuter-Lorenz, 2009, for a review). Notwithstanding its initial framework (i.e., correlations 524 
between sensory and cognitive functions), dedifferentiation can be used to account for several facets 525 
of age-related changes in brain and behavior (see Sleimen-Malkoun et al., 2014). In the brain, it can 526 
be seen through increased interdependence between functional domains (e.g., cognition and motor 527 
control, Schäfer et al., 2006, 2010), decreased specialization of brain regions (Dennis and Cabeza 528 
2011; Park et al., 2004), and more widespread activations (Reuter-Lorenz et al., 2000; Heuninckx et 529 
al., 2005, 2008). Nevertheless, neuro-behavioral variability is not an outcome measure in the 530 
dedifferentiation approach and its extensions. In this regard, for a long time, the aging literature 531 
essentially focused on behavioral variability (e.g., response times) in relation to changes in patterns 532 
of brain activations (Hultsch et al., 2008; MacDonald et al., 2009), rather than on characterizing brain 533 
signals fluctuations themselves. The neural noise hypothesis (Li et al., 2000; Li and Sikstrom, 2002) is 534 
one of the first and most established approaches dealing with this aspect. It argues in favor of an 535 
increased random background activity in the aged CNS (referred to as neural noise), resulting in a 536 
higher intra-individual variability in performance (Li et al., 2000, 2001; Li and Sikstrom, 2002; Hultsch 537 
et al., 2002). Currently, it is widely recognized that the variability of brain activations in space and 538 
time is of high relevance to understand brain functioning in health (e.g., development, Vakorin et al., 539 
2011, and normal aging, McIntosh et al., 2013) and disease (e.g., autism, Bosl et al., 2011, and 540 
Alzheimer disease, Mizuno et al., 2010). This rather recent interest succeeds a more established view 541 
in the domains of physiology and motor behavior where the loss of complexity hypothesis (LOCH) was 542 
developed (Lipsitz and Goldberger, 1992; Lipsitz, 2002, 2004). In this framework, the structure of 543 
fluctuations is considered to reflect the complexity of the underlying functional organization and 544 
interactions within and between different subsystems. The LOCH stipulates that during aging, as well 545 
as disease, there is a generic tendency towards less complex (behavioral and physiological) outputs 546 
that could be in the direction of an increased regularity or an increased randomness (Goldberger, 547 
1996; Vaillancourt and Newell, 2002, 2003), both supposedly indicative of a breakdown of functional 548 
synergies and a decoupling of components. The LOCH can be connected to dedifferentiation of brain 549 
activations by looking at the spatial distribution of variability and linking time-scales of fluctuations to 550 
information processing in the brain. A more uniform spatial representation of variability across 551 
cortical and subcortical structures expresses the characteristic spatial dedifferentiation of the aging 552 
brain (Garrett et al., 2011). Conversely, the time-scales view presumes that complexity at finer scales 553 
characterizes local processing, and may thus be related to short neural connections, whereas the 554 
coarser scales (by filtering out higher frequencies) reflect the more long-range (i.e., global) 555 
interactions, and therefore depend on longer neuronal fibers (Mizuno et al., 2010; Vakorin et al., 556 
2011; McIntosh et al. 2013). McIntosh et al. (2013) argued in favor of this assumption and showed 557 
that scale differences observed with MSE follow closely those that can be quantified through other 558 
entropy measures that distinguish local and distributed informational exchanges (i.e., conditional 559 
entropy and mutual information). 560 

All the aforementioned aging hypotheses could be linked to underlying alterations of neural 561 
structures and interactions, as well as dysregulation of neurotransmission, together leading to a less 562 
rich and flexible repertoire of functional synergies. Structurally and physiologically, the aging brain is 563 
known to incur changes characterized by a marginal neuronal loss (Bishop et al., 2010; Morrisson and 564 
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Hof, 1997; Wickelgre, 1996), but a substantial decline in the integrity of white matter (Madden et al., 565 
2012; Sullivan et al., 2010), as well as a disruption in the synthesis of some neuro-transmitters 566 
(dopamine, norepinephrine, acetylcholine). These modifications greatly affect large-scale brain 567 
networks by disturbing inter-hemispheric functional connections and interactions (Duffy et al., 1996; 568 
Kikuchi et al., 2000; Langan et al., 2010), as well as somatosensory cortical inhibition (Cheng and Lin, 569 
2013). Impaired dopaminergic neurotransmission further compromises the modulation of neural 570 
noise, which is an additional cause of inflexibility of brain activity and behavior (Hong and Rebec, 571 
2012). The conjunction of all these alteration is most likely responsible for the observed changes in 572 
multiscale variability and activation patterns, which nicely merges with the predictions stemming 573 
from main aging theories. Indeed, although these theories were developed to cover different 574 
domains and mechanisms, they converge to describe systemic modifications characterizing the 575 
senescence process(es) in the neuro-behavioral system (Sleimen-Malkoun et al., 2014). An essential 576 
current debate that needs to be settled is the relative importance of local (i.e., grey matter and 577 
neurotransmission degradation) and global (i.e., white matter degradation and demyelination) 578 
network changes, as well as the beneficial or detrimental role of stochastic components of brain 579 
dynamics (i.e., noise), and how these factors affect functional connectivity, brain signal variability, 580 
and performance. In the framework of dedifferentiation the degradation of neurotransmission is 581 
thought to reduce the signal-to-noise ratio in local networks leading to less distinct cortical 582 
representations, and potentially to less specific functional connectivity (Li and Lindenberger, 1999; Li 583 
et al. 2001; Li, 2002; Li and Sikström, 2002). Functional connectivity and complexity are considered to 584 
entertain an inverse relationship, according to which higher entropy is found when connectivity is 585 
poor, and vice versa (Friston, 1996; Müller and Lindenberger, 2012; Ghanbari et al., 2013). However, 586 
from a different perspective, the reverse is commonly suggested (cf. Vakorin et al., 2011) based on 587 
the assumption that information processing and (neural) complexity go hand in hand (Tononi et al., 588 
1994, 1998; Slifkin and Newell, 1999). Conversely, following the finding that neural information 589 
transmission is determined by both the degree and time-scale of synchrony (Baptista and Kurths, 590 
2008), a different view can be suggested. Accordingly, neural processing would be maximized when 591 
synchronization is high at coarse time-scales (strong connectivity requiring complexity to be low) and 592 
low at fine-scales (weak connectivity allowing the expression of greater complexity). Evidence for 593 
such time-scale dependence, with a negative connectivity-complexity association at fine-scales and 594 
the reverse at coarser scales was found in resting-state fMRI data (McDonaugh and Nashiro, 2014), 595 
as well as in mean field model and BOLD simulations (Jirsa et al. 2010; Nakagawa et al., 2013). 596 
Therefore, it could be concluded that entropic and variability changes convey different information 597 
depending on the time-scale under scrutiny. More precision should be gained in the future by 598 
accounting for the recently uncovered non-stationarity of the dynamics of resting state fMRI (Allen et 599 
al., 2012), which is expressed through different functional connectivity measures for different time 600 
windows and moments in time. Hansen et al. (2014) demonstrated that the non-stationarity of the 601 
resting state dynamics is evident in rapid changes in functional connectivity patterns, which are 602 
otherwise relatively invariant during epochs lasting one to two minutes. These transitions are 603 
reminiscent of phase transitions as known from statistical physics and were referred to as Functional 604 
Connectivity Dynamics (FCD, Hansen et al., 2014). A successful quantification of FCD promises to 605 
provide a more profound understanding of variability- and complexity-related phenomena in brain 606 
networks and thus ageing-related changes in brain and behavior.  607 
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Overall, it appears that while the aging brain displays more widespread activations, in terms of 608 
information processing, it is characterized by an increased spatial clustering with a shift towards a 609 
lesser contribution of long-range connections (cf., Meunier et al., 2009). However, the contribution 610 
of changes in connectivity and non-stationaries remains to be unraveled. 611 

Conclusion 612 

Our findings provide support to the importance of multiscale brain signal variability as a means to 613 
assess the effects of aging on brain functioning. Even though no absolute value or a single metric can 614 
currently be offered as a biomarker of brain age, the contribution of a systematic study of variability 615 
through multiple measures and scales rests in the link that can be established with functional and 616 
structural connectivity, as well as the richness of activation patterns. Nevertheless, we argue that any 617 
expected or discussed effect of aging should meet the complexity of the functional organization 618 
within the human neurophysiological and neurobehavioral system, which makes simple, strict and 619 
irrevocably generalizable correspondences unlikely to be found. It would be misleading, for instance, 620 
to expect that aging is a process of “loss”, and that what is observed in term of behavior mirrors 621 
sensu stricto changes in brain activations. In the brain, what counts most to insure a rich adaptable 622 
behavior is the interplay between multiple factors, namely, local and global neuro-anatomical 623 
connectivity, noise levels and interaction delays (cf., Ghosh et al., 2008; Jirsa et al., 2010; Deco et al., 624 
2011). Accordingly, the healthy brain expresses critical magnitudes and structures of variability that 625 
undergo significant changes with development, aging, and disease. Regarding aging, some general 626 
features can be extracted. Mainly, a pervasive reduced level of variability, in terms of magnitude, an 627 
increased irregularity at shorter time-scale, a decrease complexity at long scales, and finally a spatial 628 
dedifferentiation in activations and between brain states (e.g., rest vs. task). The meaning of these 629 
changes and their link with structure, function and dynamics can be significantly furthered and made 630 
more explicit through theoretical and simulation studies and empirical investigations. Systematic 631 
investigation of how aging-relevant functional and structural modifications affect the outcome of 632 
multiscale variability and complexity metrics would offer a major contribution. A wider set of entropy 633 
estimators (e.g., epsilon entropy) and metrics can also be covered (multivariate measures, 634 
synchronization measures, Lyapunov exponents, etc.). However, it is to be expected that these 635 
supplementary methods will provide converging evidence in terms of global effects, as it has been 636 
found in the present study for the measures quantifying fluctuations’ magnitude and those 637 
quantifying their structure. Therefore, based on our findings we contend that adding more metrics 638 
would not profoundly advance our current understanding of aging. Conversely, a novel and more 639 
promising direction would be appropriately taking into account the non-stationary nature of brain 640 
processes, which seem to be an inherent property of brain functioning and to occur on various scales 641 
of organization (cf., Hansen et al., 2014). Finally, combining different modalities of brain imaging and 642 
investigating different brain states in a single aging experiment would make it possible to irrefutably 643 
relate the different phenomena that have been separately shown to characterize aging (e.g., 644 
dedifferentiation, loss of complexity, variability changes), as well as integrate newly uncovered ones 645 
(e.g., non-stationaries in functional connectivity; Allen et al., 2012; Hansen et al., 2014) while 646 
establishing the link with performance and behavior. 647 

  648 
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Legends 866 

Figure 1. EEG time series and power spectra of randomly chosen data segments. Time series (left column) and 867 
power spectra (right column) of randomly chosen data segments for channel Cz of two participants, one young 868 
and one old, are shown. Resting state ‘R’ condition is presented in in blueish colors, and oddball counting ‘OC’ 869 
in reddish colors. From top to bottom, the two conditions for the young participant, and then similarly for the 870 
old one. The corresponding DoF is reported with each power spectrum. A peak close to 10 Hz is apparent in all 871 
cases but for the ‘OC’ condition of the old participant. 872 

Figure 2. Multiscale metrics of randomly chosen data segments. The mutliscale metrics of the same data 873 
segments of Figure 1 are shown, the metrics being arranged from top to bottom (‘ln(V)’ and ‘ln(F)’ – also 874 
depicting the value of ‘H’ – in logarithmic scale, then, ‘SD’, ‘MSE’ (solid line) and ‘MLZ’ (dotted line) and, finally, 875 
‘MSEn’ (solid line) and ‘MLZn’ (dotted line), in linear scale), and data segments arranged from left to right 876 
column , in the same colors as in Figure 1. The frequency peaks close to 10 Hz correspond to local minima of 877 
‘ln(V)’ at the time scale of 100 ms. The peaks of MSE and MLZ, as well as the first peaks of the ‘ln(V)’, close to 878 
the time scale of 40 ms, are related to the fact that most of the power of the signals lies below 50 Hz. 879 
Accordingly, the instances where ‘ln(V)’ reduces again after the time scale of 148 ms correspond to additional 880 
power peaks in the low theta and delta frequencies. However, in general, there is no straightforward 881 
relationship between frequencies of the power spectra and time-scales of the metrics that undergo either 882 
detrending (‘ln(F)’ of DFA) or coarse graining (‘SD’, ‘MSE’, ‘MLZ’, ‘MSEn’, and ‘MLZn’). 883 

Figure 3. Group means and standard error intervals of the metrics of the variability magnitude across 884 
conditions. From top to bottom: power spectra (P), logarithmic plots of variograms (ln(V)), standard deviation 885 
(SD), and logarithmic plots of detrended fluctuations (ln(F)) are shown for channel Cz, for all conditions (‘R’ –886 
bluish colors, ‘OnC’ –greenish colors, and ‘OC’ –reddish colors, from left to right columns), with darker colors 887 
for old participants (lighter for young). Thick lines and areas of faded colors represent the means and the 888 
standard error intervals, respectively. Horizontal axes depict frequency for P, and time-scale logarithmically for 889 
ln(F)) and ln(V), and linearly for SD. Please note the group differences, which are similar (but not identical) 890 
among conditions. The magnitude of variability is generally higher for young participants than old participants 891 
across scales, particularly so for longer time scales and lower frequencies (except for a small interval around 8 892 
Hz). 893 

Figure 4. Group means and standard error intervals of the metrics of the of variability structure across 894 
conditions. From top to bottom: degrees of freedom (DoF), generalized Hurst exponent (H), multiscale sample 895 
entropy (MSE), normalized multiscale entropy (MSEn), multiscale Lempel-Ziv entropy (MLZ), and normalized 896 
multiscale Lempel-Ziv entropy (MLZn) for all conditions. The arrangement of columns, as well as the color and 897 
line conventions, are similar to Figure 1, except for DoF and H, where error bars are used to depict the standard 898 
error intervals. For DoF and H, all channels are shown along the horizontal axis (from frontal to occipital and 899 
left to right hemisphere ones), whereas channel Cz is shown for the rest of the metrics. Thus, the horizontal 900 
axes for those metrics depict time-scale in a linear scale. Please note the group differences, which are similar 901 
(but not identical) among conditions. In particular, DoF are more and H is lower for the old participants than 902 
the young participants across all channels, MSE and MLZ are higher for old participants for short time-scales, 903 
below 24 and 20 ms, respectively, and the inverse for longer scales. MSEn and MLZn are also higher for old 904 
participants for scales below 32 ms, but the effect for longer time-scales is weaker. 905 

Figure 5. Task latent variables for the group main effect. Each panel shows the weights of the task latent 906 
variables of the contrast that corresponds to the group main effect ‘Y’-‘O’. Each bar corresponds to a group-907 
condition combination, with groups being arranged in increasing age from left to right, and conditions arranged 908 
in an order of increasing attention and/or task demands (i.e., from ‘R’ to ‘OC’), also from left to right. Color 909 
conventions are identical to previous figures. The name of each metric together with the corresponding p-value 910 
(as derived from the parametric test for significance) and the singular value s of the SVD (proportional to the 911 
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variance explained by the contrast) are shown on top of the respective panel. Non-overlapping confidence 912 
intervals signify that conditions and/or groups are separated reliably by the contrast. Thus, the contrast is 913 
significant and reliably separates the two groups. 914 

Figure 6. Brain latent variables for the group main effect of the magnitude of variability metrics. The panels 915 
show how much each data element, i.e., a metric’s data point, covaries with the contrast that corresponds to 916 
the group main effect (see Figure 3), in terms of bootstrap ratios, from left to right: ln(V), SD, and ln(F). 917 
Absolute values larger than 2.5758 approximate the 99th two-tailed percentile. The vertical axis for all panels 918 
depicts channels arranged from top to bottom, starting from frontal and left hemisphere channels, to occipital 919 
and right hemisphere ones. The horizontal axes depict frequency for P and time-scale in a logarithmic scale for 920 
ln(V) and ln(F), and in a linear one for SD. Since the contrast is ‘Y’-‘O’, positive values in reddish colors signify 921 
points where young (old) participants had higher values, and the inverse for negative/bluish values. All metrics 922 
are higher for young participants: P for frequencies below 12 Hz with the exception of a short band around 8 923 
Hz, ln(F) for time-scales longer than 20-32 ms, ln(V) for almost all time-scales, and SD for all time-scales. In 924 
general, the effect is statistically stronger for parieto-occipital channels, and for longer time-scales and lower 925 
frequencies. 926 

Figure 7. Brain latent variables for groups’ main effect for DoF and H. The two panels depict the bootstrap 927 
ratios of the group main effect for DoF and H (left and right, respectively) across a whole brain with the nose at 928 
the top. Interpretations are the same as in Figure 4. The old participants showed reliably more DoF and lower H 929 
for (almost) all channels than the young participants. 930 

Figure 8. Brain latent variables for groups’ main effect of metrics of the structure of variability. The panels 931 
depict the bootstrap ratios of the group main effect for MSE, MSEn, MLZ and MLZn, from left to right. 932 
Interpretations, vertical axes and color conventions are the same as in Figure 4. The horizontal axes depict 933 
time-scale in a linear scale. All metrics are higher for old participants below some scale (approximately 24, 32, 934 
20, and 36 ms, respectively); this effect is statistically stronger for parieto-occipital channels. Above these 935 
scales MSE and MLZ are higher for young participants than for the old participants up to at least the scale of 936 
80ms. This effect is marginally reliable for MSEn and MLZn and stronger for fronto-central channels. 937 

Figure 9. Task latent variables for condition main effect. This figure has an identical arrangement and 938 
conventions as Figure 3 (DoF and H are omitted because they were not significant). This latent variable 939 
contrasts ‘R’ versus ‘OdC’ with ‘OnC’ being in the middle, i.e., it arranges conditions in an order of increasing 940 
attention and/or task demands. It is significant for almost all metrics with a p < 0.001, except for MSEn and 941 
MLZn that have slightly higher values (p = 0.002 and p = 0.005, respectively), whereas MLZ is significant only to 942 
a value of p = 0.069. However, confidence intervals are largely overlapping, i.e., conditions are not separated 943 
reliably, except for the entropic measures (MSE, MSEn, MLZ, and MLZn), where ‘R’ is generally separated 944 
reliably from the task conditions, mainly so for young participants. 945 

Figure 10. Brain latent variables for the condition main effect of the variability magnitude metrics. The panels 946 
depict the bootstrap ratios of the condition main effect for P, ln(V), SD, and ln(F), from left to right. 947 
Interpretations, axes and color conventions are the same as in Figure 4, only now positive (negative) values in 948 
reddish (bluish) colors signify values that were higher for condition ‘R’ (‘OC’). ln(V), and ln(F) where generally 949 
higher for the resting condition across all scales and channels, but mainly so for parieto-occipital channels. SD 950 
was higher also for ‘R’ for shorter time scales up to 100 ms, also mainly for posterior channels. Regarding P, ‘R’ 951 
had more power in the 5-10 Hz and 15-30 Hz frequency intervals, whereas ‘OC’ had more power in the delta 952 
band, mainly so for fronto-central channels. Notice that P has almost an inverse pattern with the groups’ main 953 
effect in Figure 4. 954 

Figure 11. Brain latent variables for conditions’ main effect for the structure of variability metrics. The panels 955 
depict the bootstrap ratios of the condition main effect for MSE, MSEn, MLZ and MLZn from left to right. 956 
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Interpretations, axes and color conventions are the same as in Figure 6, only now positive values in reddish 957 
colors signify values that were higher for condition ‘R’ (‘OC’), and the inverse for negative (bluish) values. All 958 
metrics are higher for ‘Rest’ below some scale (approximately 48, 56, 36, and 56 ms, respectively) for fronto-959 
central channels. MSE is higher for ‘OC’ for scales above 48 ms for all channels, as well, whereas MSEn and 960 
MLZn showed a statistically weaker tendency to be higher for ‘R’ for scales further than the points mentioned 961 
above and for almost all channels. Notice that the pattern of the results is to a large degree inverse to the 962 
results of the group main effect, mainly so for MSE and for short scales. 963 

  964 
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Tables 965 

Table I. Mean, standard deviation, minimum and maximum numbers of EEG segments per group and 966 
condition included in the analysis 967 

 Mean SD Min Max

Young 

Rest 7.8 0.6 5 8

OnC 23.9 2.0 15 25

OC 23.0 3.1 11 25

Old 
Rest 7.4 1.1 4 8

OnC 22.3 3.4 12 25 

 OC 21.6 3.1 15 25

 968 

Table II. Statistical table 969 

Effect Metric Data Structure Type of test Confidence intervals 

Gr
ou

p 
m

ai
n 

ef
fe

ct
 

P 

 empirical 

 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 6 for the Brain LV bootstrap ratios 

ln(V) 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 6 for the Brain LV bootstrap ratios 

SD 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 6 for the Brain LV bootstrap ratios 

ln(F) 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 6 for the Brain LV bootstrap ratios 

DoF 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 7 for the Brain LV bootstrap ratios 

H  permutation [-0.0008, 0.0046] 
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 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 7 for the Brain LV bootstrap ratios 

MSE 

 permutation [0.0000, 0.0078] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 8 for the Brain LV bootstrap ratios 

MSEn 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 8 for the Brain LV bootstrap ratios 

MLZ 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 8 for the Brain LV bootstrap ratios 

MLZn 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 5 for Task LV confidence intervals and 

Figure 8 for the Brain LV bootstrap ratios 

Co
nd

iti
on

 m
ai

n 
ef

fe
ct

 

P 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 10 for the Brain LV bootstrap ratios 

n(V) 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 10 for the Brain LV bootstrap ratios 

SD 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 10 for the Brain LV bootstrap ratios 

ln(F) 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 10 for the Brain LV bootstrap ratios 

MSE 

 permutation [-0.0008, 0.0046] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 11 for the Brain LV bootstrap ratios 
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MSEn 

 permutation [0.0000, 0.0078] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 11 for the Brain LV bootstrap ratios 

MLZ 

 permutation [0.0548, 0.0865] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 11 for the Brain LV bootstrap ratios 

MLZn 

 permutation [0.0018, 0.0120] 

 bootstrap 
see Figure 9 for Task LV confidence intervals and 

Figure 11 for the Brain LV bootstrap ratios 

 970 
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