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Abstract Modern neuroimaging techniques, such as PET

and fMRI, attracted specialists in cognitive processing to

the problems of brain energy and its transformations in

relation to information processing. Neuroenergetics has

experienced explosive progress during the last decade,

complex biochemical and biophysical models of energy

turnover in the brain necessitate the search of the general

principles behind them, which could be linked to the

cognitive view of the brain. In our conceptual descriptive

generalization, we consider how the basic thermodynami-

cal reasoning can be used to better understand brain

energy. We suggest how thermodynamical principles can

be applied to the existing data and theories to obtain the

holistic framework of energetic processes in the brain

coupled with information processing. This novel and

purely descriptive framework permits the integration of

approaches of different disciplines to cognitive processing:

psychology, physics, physiology, mathematics, molecular

biology, biochemistry, etc. Thus, the proposed general

principled approach would be helpful for specialists from

different fields of cognition.

Keywords Energy turnover � Neuroenergetics � Free

energy � Energy field

Introduction to energetic concepts

As this article aims to provide a conceptual understanding

of brain energy for cognitive scientists, we will begin with

a discussion on the concepts of energy and its different

types avoiding the formulas but emphasizing their physical

content. Energy is an abstract quantity that is used to

describe interactions between different objects and pro-

cesses. The advantage of the notion of energy is that it

permits comparison of totally different processes (e.g. one

can compare climbing a hill and boiling a can of water in

terms of their energy requirements). Another important

advantage of energy notion is that it permits linking totally

different processes using the idea of energy transformation

between them (e.g. to link energy in a piece of bread with

energy needed for the muscles to lift an object). Thus,

energy permits obtaining a general idea of something in

common between totally different processes or drawing a

link between them without going into details of exact

interactions and transformations, which are always quite

complicated (Stowe 2007).

For example, one can generally say that energy of glu-

cose is partly transformed to the energy of electric fields in

neural cells. This statement is true even if we do not pro-

vide any details about the mechanisms of this transforma-

tion. Even if we know the principal steps of the

transformation, we do not describe it precisely in terms of

how atoms and electrons interact with each molecule and

between the molecules. Thus, the notion of energy permits

following the general mechanism without getting lost in

complicated molecular and quantum details at each step.

Interactions between objects are usually due to the fact

that they are in motion or they have a special position in

space. When an object is in motion, it has kinetic energy.

When it is in a certain position, which may potentially lead
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to motion, it has potential energy. For example, different

parts of a complex molecule have a certain position with

respect to each other that defines the potential energy of the

molecule—the potential of its parts to move with respect to

each other.

If we hold something in our hand without moving, this

object has a potential to fall; thus, it has potential energy

due to its position. If we release the object, it falls and

acquires kinetic energy due to its movement. In this way,

potential energy is transformed into kinetic energy.

Importantly, as the two types of energy mutually transform,

their sum remains unchanged. The same concerns, for

example, gas molecules in a certain closed and isolated

container—the total sum of potential and kinetic energies

of molecules remains the same. That is why the term

internal energy was proposed, which is the sum of kinetic

and potential energies of all molecules in the container

under the given conditions. The way to change the internal

energy of the container would be to change conditions, e.g.

to heat it. Heating would increase internal energy of the

container.

Without changing the surroundings, i.e. without putting

energy into the system or taking energy from it, the internal

energy of the isolated object does not change with time, but

rather is conserved. This is known as energy conservation

principle.

Energy can be used to do work; in this case, one can say

that energy is converted into work. For example, if there is a

piston in the container, heating the container will move the

piston to the molecules of the gas producing work on it. Part

of the internal energy will be converted into work. In general,

part of the amount of heat supplied to a closed system

changes its internal energy, and another part is converted to

work done by the system on its surroundings. This is the first

law of thermodynamics, which is closely linked to the energy

conservation principle: if no heat is supplied, the internal

energy in a closed system is conserved. However, most of the

systems, including the brain, are not insulated; they dissipate

heat in the environment. In this case, if we supply energy,

part of it does work, part heats up the system, and part is just

dissipated to the surroundings as heat (Fig. 1).

It turns out that the more disordered the system is, the

less its internal energy can be converted into work. Intui-

tively, this is because disordered motion is less effective to

do work compared with ordered motion. To take this into

account, the free energy concept was introduced. Free

energy is the internal energy minus the unusable energy

related to the disordered motion of parts of the system

(Fig. 2). The entropy (measure of disorder) of a system

multiplied by temperature mathematically defines this

unusable energy. Thus, the free energy reflects the maximal

part of internal energy the system can convert into work.

With these general ideas on energy in mind, it is pos-

sible to consider more specifically brain energy.

Fig. 1 Basic transformations of energy in a system. If energy is

supplied to a non-isolated system (represented by the oval), part of it

does work, part heats up the system, and part is dissipated to the

surroundings as heat. These transformations are reflected in the basic

physical principle of energy conservation and in the first law of

thermodynamics. When the system is isolated and no energy is

supplied, its internal energy is conserved (energy conservation).

When the system is isolated but energy is supplied, the system heats

up and transforms part of the acquired energy into work (the first law

of thermodynamics). The depicted non-isolated system, which can

also dissipate part of the acquired energy as heat in the environment,

is a more general case realized in biological systems. However, this

case can be easily reduced to the energy conservation principle if we

imagine an isolated container encompassing the whole set of

processes in Fig. 1 so that energy supply also happens from the

inside of this container. For example, one can put an animal into the

isolated chamber with food in it. In such a chamber, the sum of all

types of energy is constant, whatever happens with food and animal—

internal energy within the chamber is conserved

Fig. 2 Internal energy and free energy. Internal energy (the large

rectangle) is composed of the free energy (smaller rectangle) and the

entropy at the given temperature. The free energy can be used as

work. The entropy reflects unusable energy related to the disordered

motion of parts of the system. Thus, the free energy reflects the

maximal part of internal energy the system can convert into work
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Metabolic aspects of brain energy

In this section, we aim to clarify the link between energy

concepts and metabolic processes in the brain at the most

general level not entering into the details of metabolic

pathways (which can be found in the cited reviews of brain

metabolism). The brain like other organs can be considered

a certain molecular complex where organic molecules form

various cellular and extracellular structures. All the mole-

cules in the brain either move or have a potential to move

so that the brain has a certain internal energy at each

moment of time. If we put our body into an insulated

chamber, internal energy within this chamber should be

conserved according to the energy conservation principle

(Fig. 1). It follows that no new energy can be generated in

the body from nothing; the amount of energy received by

each organ is converted into work and heat. How does the

brain receive energy? Energy for the brain comes in the

form of organic substances (glucose) carried by the blood

and in the form of the heat of the blood. Heat energy

provided by the blood to the brain is important because it

participates in maintaining the optimal temperature for the

work of numerous enzyme molecules. Metabolic energy

stored in glucose is used to transform various complex

molecules in the brain (Nehlig and Coles 2007; Gjedde

2007). Transforming a molecule means moving it or its

certain parts, thus increasing kinetic energy, also changing

the position of the molecule and its parts, and thus

increasing potential energy. The increase in kinetic and

potential energies of molecules leads to the increase in the

internal energy of these molecules. Thus, the incoming

energy is used to increase the internal energy of the brain.

Further, this increase in internal energy is partly used for

brain work and another part is dissipated as heat in the

surroundings (Fig. 1).

Though it is theoretically clear that the incoming energy

should increase the internal energy of the brain, there is no

practical way to measure internal energy by some tests on

the surface of the brain or in its surroundings. It should be

measured in every point inside the brain. If we knew

internal energy in each point inside the brain, the sum of

these values would provide internal energy for the whole

brain. This is of course a very complicated issue from the

technical standpoint. Existing methods permit only indirect

estimations of internal energy in small volumes of the brain

(voxels) on the basis of the average blood flow, blood

oxygenation, and metabolism within these small volumes

(Aubert et al. 2007; Raichle and Mintun 2006; Logothetis

and Pfeuffer 2004).

Glucose is a molecule consisting of six carbon atoms.

Each bond between carbon atoms stores a certain amount

of potential energy, which can be used to do work in the

brain. Thus, the complex biochemical processes of glucose

metabolism have one goal—to cleave the bonds between

carbon atoms and to obtain energy from this cleavage in a

usable form. This cleavage can be divided into two main

stages (see McKenna et al. 2012 for details). In the first

stage, the six carbon glucose molecule is cleaved into two

identical three carbon fragments. Each of them is called

pyruvate. This stage does not require oxygen (i.e. it is

anaerobic), it occurs in the cytoplasm, and is only moder-

ately efficient for energy production. In the next stage, each

of the two pyruvate molecules is totally cleaved resulting in

six carbon atoms bound with oxygen. Evidently, this stage

requires oxygen (i.e. it is aerobic); it happens in mito-

chondria and leads to the greatest release of energy. In both

of these stages, energy from the carbon bonds cleavage is

not totally dissipated as heat but is transferred to the energy

in the bonds of the other molecule called ATP. Within this

molecule, the energy is stored in the energy-rich phos-

phodiester bonds. The ATP molecule is transported to the

different parts of the cell where cleavage of its phospho-

diester bonds happens and the released energy modifies

various reactions and molecular processes in the cell. The

resulting changes happen both in the movements of mol-

ecules and their parts and in their positions, thus both

kinetic and potential energies of brain molecules increase,

i.e. there is an increase in the brain’s internal energy by the

energy originating from glucose. Oxygen is vitally

important because without it anaerobic metabolism pro-

vides only four molecules of ATP per glucose molecule. In

the presence of oxygen, energy efficiency dramatically

increases to up to 38 molecules of ATP per glucose

molecule.

Importantly, the energy of ATP (originating from glu-

cose) is mainly used to establish the electrochemical gra-

dients across cell membranes in the brain (Gjedde 2007).

Thus, most of glucose energy is transformed into the

potential energy of electromagnetic fields. This potential

energy stored across the cellular membrane is further

transformed into the kinetic energy of ions, which move

across the membrane and create the flows of energy

propagations in different directions within the brain.

Energy flows are the transformations of energy that prop-

agate in certain directions along the cellular structures

(axons, dendrites, synapses, etc.) (Strelnikov 2010). As

local changes in metabolic energy turnover cannot propa-

gate quickly to the other sites of the neural system, the

speed of metabolic changes being measured in seconds,

these changes are transmitted in the form of electromag-

netic field energy changes, which happen in milliseconds.

On the other hand, a permanent level of metabolic energy

turnover in cells is needed to maintain the mechanisms of

electromagnetic fields generation (transmembrane poten-

tial, etc.). Thus, metabolic energy is linked to the energy of

electromagnetic processes; the spatial and temporal
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reorganization of the whole system is required for the

processing of the incoming stimuli. Electrical signalling

processes are the major consumer of energy in the brain,

and the largest component of the signalling energy use is

on synaptic transmission (Harris Julia et al. 2012).

According to the earlier speculation of Shulman et al.

(2001), after passing through the blood–brain barrier, glu-

cose enters only astrocytes, where it is converted into

lactate, which is then taken up by neurons for oxidation.

This model emphasizes the energetic coupling between

neurons and glia at the level of energy metabolism. How-

ever, the real-world situation is probably more complex:

oxidative glucose metabolism in glia is discussed in the

literature (Gruetter and Leif 2003; Aubert et al. 2007;

Hyder et al. 2006; Simpson et al. 2007). See Gjedde (2007)

and Belanger et al. (2011) for a detailed discussion of the

rates of glycolysis and oxidative phosphorylation in neu-

rons and glial cells. Therefore, it is still not evident which

factors influence the distribution of oxidative and non-

oxidative metabolism among neurons and astrocytes,

including the fractions of the total glucose oxidation in

neurons that originate in astrocytes and in direct glucose

uptake (see Riera et al. 2008 for a detailed review).

Brain energy and information processing

Even if the molecular mechanisms of energy turnover in

the brain were completely understood, there would be quite

a separate problem of how to link these energetic properties

of the brain to information processing, which is the main

function of the brain. It is evident that energy transfor-

mations in the brain are related to brain work. Work in

physical terms can be defined as energy transfer between

objects, which are molecules and cells in the case of the

brain. The coupling between work (energy) and informa-

tion is a crucial process, which happens in the brain, and

brain work realized to transform information is different in

its meaning from the simple mechanical understanding of

work (Gjedde 2007).

To understand the basic physical link between energy

and information, let us imagine a container divided by a

partition so that only one-half of the container is filled with

gas and another half is completely empty. When we take

away the partition, the gas will expand to the whole volume

of the container. The gas will release energy as heat into

the environment, and its own internal energy and temper-

ature will drop. In the new, larger volume, there are more

possible positions in the space for each gas molecule. We

are more uncertain about the positions of molecules in the

larger volume. Thus, one can see that gas expansion leads

to the loss of information about the spatial positions of the

molecules accompanied by heat release to the environment.

Landauer’s principle states that heat will be released even

if there is only one particle, which is initially either in the

right or in the left part of the container with a partition.

When the partition is removed and the particle freely

moves in the whole volume of the container, one bit of

information is lost and a corresponding amount of heat is

released (see Bennett 2003 for discussion). This is an

important relation between the changes in information and

energy, which can also be applied to biological systems

(Smith 2008). Evidently, similar approaches are needed to

complement the molecular studies of energy turnover in the

brain and to clarify their link with information processing.

As we have seen in the above example, changes in infor-

mation content are related to the internal energy of the gas in

the container and to the changes in the ‘‘disorder’’ of gas

particles known as entropy. We discussed in the ‘‘Introduc-

tion’’ that free energy is a certain difference between internal

energy and entropy. During gas expansion, its internal energy

decreases, its entropy (‘‘disorder’’) increases, thus its free

energy diminishes. Thus, one can see that changes in free

energy are related to information transformations. We also

discussed in the ‘‘Introduction’’ that free energy can be

interpreted as part of internal energy, which can be transferred

into work (Fig. 2). It follows that free energy of the brain may

be related to brain work to process information. Friston

(2005, 2010), Friston et al. (2006) mathematically elaborated

such an approach, attempting to link energetic states of the

brain with information processing on the basis of the free

energy minimization principle.

The notion of free energy minimization has several

interesting applications with respect to brain function. One

direction to think about it would be in terms of stability. In

the above example about gas in the container, one can

intuitively say that the situation of the gas being distributed

throughout the volume of the container is more ‘‘stable’’,

less likely to be violated, than the situation where the gas is

accumulated in a part of the container when partition is

removed.

The other aspect of free energy minimization in the

brain concerns energy saving. To maintain high kinetic and

potential energies of its molecules, the brain needs glucose.

If these energies are minimized, glucose consumption is at

the optimal level.

These are biophysical and metabolic aspects of free

energy minimization but Friston (2005), Friston et al.

(2006) emphasizes another aspect derived from mathe-

matical modelling. In mathematical modelling, free energy

minimization is equivalent to the minimization of surprise.

In fact, this corresponds to the biophysical interpretation in

terms of stability. To have a certain stable state given the

perceived environment (i.e. to minimize surprise), the brain

should maintain an appropriate representation of the envi-

ronment. In this case, whatever is perceived in the

300 Cogn Process (2014) 15:297–306
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environment produces no surprise. In metabolic terms,

novel information, which produces surprise, demands more

energy to analyse it. Thus, minimization of surprise also

means saving energy for the brain. Another recently

described application of this principle is the consideration

of accuracy and complexity in brain coding under the

conditions of the optimized computational and metabolic

efficiencies: given the same level of accuracy, complex

representations of the environment in the brain are penal-

ized (Sengupta et al. 2013c).

Concerning the computational link of metabolic energy

and information processing in the brain, Sengupta et al.

(2013a) assessed the performance (bits/s), energy con-

sumption (ATP/s), and energy efficiency (bits/ATP) of

compartmental models and demonstrated that the largest

compartments have the highest information rates but the

lowest energy efficiency for a given voltage-gated ion

channel density. Their computational model suggested that it

is more energy efficient for information to be encoded at

lower rates in many small neurons rather than a few large,

high-information-rate neurons. Balanced inhibitory and

excitatory synaptic currents with stronger inhibitory than

excitatory conductances were shown to increase both coding

efficiency (bits/spike) and energy efficiency (ATP mole-

cules/bit) in comparison with excitatory inputs only and

equal excitatory and inhibitory conductances (Sengupta et al.

2013b).

A typical electrophysiological demonstration of the free

energy minimization mechanism is mismatch negativity

(MMN). It is a negativity in event-related potentials

(ERPs), which is elicited by infrequent variations (called

deviants) in frequently presented stimuli (called standards)

(Naatanen et al. 2007). This negativity reflects a deviance

from the expectations, which is a surprise in terms of the

free energy minimization theory. We proposed a mecha-

nism to explain deviance detection or surprise at the neural

level (Strelnikov 2007) where, for the sake of simplicity,

we presented the schematic case of no prior knowledge

when no internal representation of the stimulation exists in

the brain, so that stimulation is perceived without top–

down selective regulation:

1. Receptors register the physicochemical parameters of

the environment.

2. The receptor information is delivered to the brain,

where it changes the pattern of spontaneously gener-

ated activity.

3. Spontaneously generated brain activity serves to

predict the subsequent possible state of the environ-

ment; predictive coding of the environmental condi-

tions is created.

4. Perception of the expected environmental changes by

the appropriate neural subsystem is enhanced at the

synaptic level by such mechanisms as long-term

potentiation (LTP).

5. If the next incoming information coincides with

predictive coding, its neural processing follows the

preformed neural path. In this case, the brain response

is typical; no new neural profile of adaptation to the

environment is created. Energy is saved by not

adapting neural circuits anew to the incoming infor-

mation; an inherent stability of the system precludes

non-dissipative population dynamics (David et al.

2005). In this way, according to the fundamental

principle of neurodynamics (Friston 2005), the free

energy is minimized.

6. If the incoming information does not coincide with

predictive coding, its neural processing does not follow

the neural path facilitated by LTP. The free energy

then increases: silent synapses are switched on (Lu-

scher et al. 2000), additional neural circuits are formed,

and additional loci of excitation occur.

The additional sources of neural excitation at the last

stage may result in the observed negativity to the deviant

stimuli. The preformed neural paths, which reflect the

internal representations of the expected phenomena, con-

stitute a complex organization of energy flows in the brain

at rest (Strelnikov et al. 2010). Energy flows can be defined

as coherent spatial and temporal changes in the energy

turnover of neuroglial units accompanying information

treatment (Strelnikov 2010). As these energy flows are

used to code the usual environment, they constitute the

neural basis of adaptation, which exists in the brain even

without stimulation. Energy flows in the brain also par-

ticipate in spontaneous activity underlying dreams, crea-

tivity, imagination, etc. The role of these states in cognitive

processing may be in the maintenance and transformation

of internal representation, which are further used to per-

ceive the external world.

Based on the above considerations, one can define brain

activation in response to stimulation as information-driven

reorganization of energy flows in and among populations of

neuroglial units, leading to a total increase in energy uti-

lization in these populations (Strelnikov 2010). The general

concept of energy flows used in this definition includes the

turnover of both metabolic and electromagnetic energy,

e.g. the energy of electromagnetic fields (Ioannides 2006).

As metabolic energy is linked to the energy of electro-

magnetic processes, the spatial and temporal reorganization

of the whole energetic system is required for the processing

of the incoming stimuli. At rest, the organization of this

system reflects the adaptive predictive coding, and the

degree of its reorganization caused by stimulation depends

on the degree of the deviance of this stimulation from

predictive coding.

Cogn Process (2014) 15:297–306 301

123



Since the brain permanently receives energy from the

environment via food and sensory channels and dissipates

it to the environment, predictive coding may reflect an

attempt of the brain to establish a sort of energy equilib-

rium with its environment. Indeed, according to energy

conservation principle and the laws of thermodynamics, all

the energy input to the brain should be transformed to work

and heat. If a certain amount of the incoming energy is not

transformed into work, it is transformed into heat. How-

ever, there is no reason to overheat the brain or heat the

environment by dissipating the excessive heat from the

brain. Thus, the excessive incoming energy should be

minimized. At the behavioural level, an attempt of the

brain to establish such equilibrium with its environment

may manifest itself as an attempt to adapt to the environ-

ment (Strelnikov et al. 2010). In the case of the lack of

sensory input as in profound deafness, one can expect the

diminished predictive activity in the auditory cortex. If

afterwards the auditory input is restored by cochlear

implants, one can expect the reactivation of predictive

coding in the auditory areas. On the other hand, as

behaviourally such patients use visual cues to compensate

for the disturbed sound through the implant, one can also

expect the formation of the compensatory visuo-auditory

predictive coding in the brain. We showed with PET the

reactivation of the auditory and visuo-auditory areas at rest

in experienced cochlear implant users at rest (Strelnikov

et al. 2010). Furthermore, in these areas, there was an

increase in activity between inexperienced and experienced

implanted patients, which corresponds to the increase in

their auditory performance and thus reflects the decrease in

prediction error. We believe that our study of the restored

sensory loss demonstrates a direct link between the free

energy understood as predictive error reduction and meta-

bolic activity.

There are also studies that suggest the diminishing of the

BOLD response with learning, i.e. with the behavioural

decrease in prediction error (e.g. Klingner et al. 2014; Toni

et al. 1998). This diminishing may be due to the increase at

baseline predictive activity as discussed above for our PET

study.

We have discussed so far the free energy minimization

as internal energy minimization. However, as we noted in

the ‘‘Introduction’’, the free energy is not just internal

energy but a difference between internal energy and

entropy at the given temperature (Fig. 2). It follows that

even at the same level of internal energy, the free energy

can be, however, minimized by increasing the entropy in

the given brain volume.

We mentioned in the ‘‘Introduction’’ that entropy is a

measure of disorder. However, stated like this, there is no

evident advantage for the brain to increase its disorder. If

we define ‘‘disorder’’ in more physical terms, it is the

number of ways in which a system may be arranged given

that we do not know in which particular state the system in

the present moment is. To explain this complex definition,

a simple example from everyday life may be helpful. If we

do not know whether a coat is in the wardrobe or under the

sofa, the disorder (and entropy) is evidently higher than

when we know that the coat has a single state ranged in the

wardrobe. In the first case of the higher entropy, we know a

certain macroscopic state ‘‘the coat is in the room’’ but we

do not know exactly what the position of the coat is.

Considering by analogy the molecular systems, entropy is

defined by the number of possible microscopic configura-

tions of the individual atoms and molecules, which could

give rise to the macroscopic state of the system.

This more detailed consideration of entropy suggests its

useful implementation in the functional architecture of the

brain. It permits maintaining different representations of

the same object or a class of objects. For example, though

we know before entering an unfamiliar office that there

should be a table inside, we do not know exactly the form

of the table, how many legs it has, etc. There is a certain

‘‘disorder’’ or uncertainty in the constructions of the table,

which the brain needs to account for in its internal repre-

sentation of a table. By increasing entropy, the brain can

minimize its surprise with respect to the variability of the

same object, i.e. minimize free energy.

In the above considerations of the free energy, we used a

descriptive physical approach; however, Friston’s theory of

free energy minimization is not based on the physical

conception of the free energy but on mathematical mod-

elling (hierarchical dynamical models and variational Ba-

yes); physical parallels are introduced only as illustration.

Those interested in mathematical formulations of this

principle may address Friston’s reviews of this issue

(Friston 2005; Friston et al. 2006). It should be noted that

variational free energy derived mathematically by Friston’s

theory is not exactly the same as physical (Helmholtz) free

energy. Variational free energy can be represented as the

difference between complexity and accuracy of neural

coding. In this case, as clarified in (Sengupta et al. 2013c),

one can understand metabolic efficiency in terms of mini-

mizing complexity (which minimizes Helmholtz free

energy), under the computational constraint that sensory

inputs are represented accurately.

Minimizing the free energy is equivalent to reducing

prediction error, thus one can predict that cognitive con-

ditions, which lead to the diminishing of prediction errors

(e.g. learning, adaptation), should lead to the decrease in

stimulation-induced metabolic activity in specialized neu-

roglial populations. At the same time, predictive coding at

rest should increase the resting-state metabolic activity of

these areas. Though the discussed above studies confirm

such predictions, they should be further verified for a large
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range of cognitive loads using neuroimaging techniques.

Another prediction, as described above, is that to minimize

the variational free energy and Helmholtz free energy, the

brain will need to decrease the complexity given the same

accuracy. This prediction can be tested using different

neural modelling approaches.

Though the free energy minimization principle provides

some interesting generalizations, it should not be consid-

ered as the only principle governing brain work. For

example, animals tend to escape from usual environment to

less predictable surroundings, many people like to travel

and obtain surprising experiences, and the brain itself

produces unpredicted information manifested as creativity

(see Friston et al. (2012) for the discussion of some of these

aspects). Thus, the free energy minimization principle can

be complemented by some other unknown principles,

which present a perspective for further studies of brain

work. For example, another interesting perspective, though

mostly on economic grounds, was proposed suggesting that

the brain network organization optimizes a trade-off

between the cost and the behavioural value of network

function (Bullmore and Sporns 2012).

Functional neuroimaging and energy fields

In recent decades, neuroimaging techniques, such as PET

and fMRI, have been developed to obtain three-dimen-

sional pictures of brain activity (Raichle and Mintun 2006).

Measuring the fourth dimension, which is temporal,

remains problematic due to the low temporal resolution of

these techniques. As a result of the average brain activity

that occurs during any given stimulation, neuroimaging

techniques indicate a certain level of brain activity in small

volumes of the brain called voxels. When each small vol-

ume, or voxel, has a certain scalar value attributed to it, the

whole spatial structure can be mathematically character-

ized as a scalar field of three dimensions. Thus, modern

neuroimaging techniques represent time-averaged brain

activity as a scalar field. Cognitive neuroimaging aims to

decode how environmental information is spatially enco-

ded in the three-dimensional energy/activity field of the

brain. The measures of energy or activity in the brain are

indirect, e.g. they do not provide the values of internal

energy or free energy. These estimations at present are

mostly based on the measures of the local blood flow and

blood oxygenation, which reflect the brain demands in

energy.

As in the physical models of energy transformations

(e.g. in the room’s air), the exact properties of each indi-

vidual particle are not described, the conception of energy

field in the brain does not consider individual molecules

and cells in the brain. Instead, it considers the brain as an

agglomeration of small volumes with a certain value of

energy in each volume (Strelnikov 2010). We do not know

the size of the smallest information-encoding volume in the

brain; it may be infinitesimal. For practical purposes, the

size of these brain volumes (voxels) can be arbitrarily

chosen on the basis of the technically available spatial

resolution and the need for precision.

Thus, functional neuroimaging techniques represent the

brain as a three-dimensional field of energy with a specific

structure: three-dimensional peaks, valleys, etc. The clas-

sical analysis of brain activity reflects a peak of energy

turnover in a specific region but neglects the local changes

of brain activity in the vicinity of the peak that should be

explored by spatial differentiation. The energy field view of

brain activity reconciles localizationism and connectionism

(Miller 1986): each field is a holistic entity, but has local

peculiarities, such as peaks. The physical relation between

energy and information transformations described in the

previous section permits to think of brain energy fields as

the sources of virtual spaces, in which information trans-

formations during cognitive processing are operated.

One can investigate peculiarities of brain energy fields

with existing mathematical techniques that are widely used

in physics. By analogy with electric potential, which deter-

mines electric forces and flows of particles (currents) in the

electric field, free energy is called thermodynamic potential

because it also determines generalized thermodynamic for-

ces and flows of particles in the energy field. Our biophysical

consideration (Strelnikov and Barone 2012) based on the

free energy minimization principle (Friston 2010) suggested

that high spatial differences (gradients) of energy between

adjacent voxels should spontaneously disappear with time.

However, we discovered stable task-related gradients of

activity at the group level (Strelnikov and Barone 2012),

suggesting the existence of stimulation-related processes

that act to maintain the described gradients.

A persistent high difference between the adjacent voxels

in one direction would correspond to two situations. In the

first case, electric activity propagates in this direction and

causes an increase in spikes fuelled and amplified by

metabolic energy as indirectly reflected in the BOLD signal

(backward propagation in the same direction being

blocked, see Strelnikov and Barone 2014 for discussion). In

the second case, there is a high inhibitory input in this

direction, which abruptly stops activity propagation. Both

cases correspond to the propagation of electric currents,

which result from stimulation-driven transformations of

energy along axons and dendrites in neuroglial networks.

Excitatory interpretations are more probable because glu-

tamate-related processes account for approximately 70 %

of total energy turnover (Shulman et al. 2004), while

GABAergic processes account for only about 15 % of total

energy turnover by neurons and glia (Patel et al. 2005).
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Besides, minimizing variational free energy as proposed

by Friston (2005) is not exactly the same as destroying

thermodynamic free energy gradients. According to the

arguments in the last section of Sengupta et al. (2013c),

these would only occur when the brain was deprived of

sensory input for a very long time. This is an interesting

perspective on sleep, deep anaesthesia, or coma where one

might expect the activity gradients noted above to be

attenuated.

Mathematically, the gradient vector indicates the

direction of the highest increase in the vicinity of a point

(Matthews 1998). Positive divergences or sources in the

field indicate the loci of the net increase of activity in the

neighbourhood of the given voxel. We detected significant

positive divergences in the visual areas during face per-

ception and in the temporal auditory and speech areas

during word perception. Thus, our approach revealed that

the information coded in the fields of brain activity is far

more detailed than just one scalar value per voxel (Strel-

nikov and Barone 2012).

If a certain point of the brain has a gradient vector

whose length and direction are specific to the given stim-

ulation, another type of stimulation will change the length

and direction of this vector. Physicists and mathematicians

transform vectors by defining the changes in their projec-

tions on the axes. For example, if we want simply to double

the length of the vector, we double its projections on the x,

y, and z axes. In contrast, if we multiply the projections on

the x, y, and z axes by different numbers, then we can

change both the length and the direction of the initial

vector. The multiplying numbers for each projection are

usually indicated along the diagonal of the 3 9 3 matrix

(wherein the non-diagonal elements are zeros for the

orthogonal coordinate system). The resulting transforma-

tion matrix for the given vector is called a tensor of rank 2,

or a dyad. We need a tensor to transform a vector in each

point of the 3D space. When we obtain a tensor associated

with each point of the 3D space via an analogy with a

vector field, this new quantity is called a tensor field.

Thus, for the vector in each voxel, we can construct a

tensor that transforms this vector between stimulation

conditions. It follows that the tensor field of brain activity

reflects the incoming sensory input that is changing the

state of the brain. Using the conception of tensor fields, we

have shown that one can analyse the incoming cognitive

input that is transforming the brain activity separately from

the resulting brain activity (Strelnikov 2013). Tensor fields

can be conceptualized as virtual spaces of sensory activity,

which act on brain energy fields to transform virtual spaces

of internal representations coded in brain energy fields.

Brain activity is neuropsychologically considered to

integrate the perceived information (e.g. Gerlach et al.

Fig. 3 Example of spatial

differentiation applied to the

scalar field of activity. a On the

left, a simulated two-

dimensional ‘‘activity’’, which

is obtained by spatial integration

of a female face. On the right,

the virtual space obtained by the

mixed second-order

differentiation of the simulated

‘‘activity’’. b On the left, the

group fMRI activity obtained

during face perception. On the

right, the virtual space obtained

by the mixed third-order

differentiation of the fMRI

activity. A general face pattern

can be observed at the occipito-

temporo-parietal junction
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2002; Basar 2012). As differentiation is the opposite

operation to integration, an interesting perspective would

be to apply a rather general differential approach to study

the peculiarities of brain activity. In this approach, the

differences between the neighbouring voxels are first

considered along one axis, then the differences between the

differences are calculated along the other axes. This

approach mathematically corresponds to the third-order

mixed spatial differentiation, and the result does not

depend on the axis chosen first. In a 3D space, this provides

a unique value per voxel, which summarizes the differ-

ences between the neighbouring voxels in relation to the

changes along all three coordinate axes together. Such a

differentiation estimates the variations of activity between

the neighbouring voxels, and one can test the hypothesis

that they participate in information coding in the brain.

Figure 3 illustrates how the simulated two-dimensional

‘‘activity’’, which originates from the integration of a

human face, may be restored with mixed differentiation. To

generate the left picture in Fig. 3a, an image of a female

face was double-integrated using the inverse (integrated)

gradient function (http://www.mathworks.com/matlab-

central/fileexchange/9734-inverse-integrated-gradient). In

spite of a certain loss due to the approximations in inte-

gration algorithms, the female face pattern could be

reconstituted by differentiation with respect to the x and y

coordinates as shown in Fig. 3a. Thus, a face is a pattern in

the virtual space, which is decoded by spatial differentia-

tion from the simulated integrative two-dimensional

‘‘activity’’. Figure 3b illustrates the virtual space originat-

ing from the three-dimensional differentiation of the real

brain activity, which is a group average during face per-

ception available at the SPM site (http://www.fil.ion.ucl.ac.

uk/spm/data/face_rfx/). The resulting face pattern in the

virtual space at the occipito-temporo-parietal junction may

be anecdotic; it is presented here just to illustrate the per-

spectives of differential approaches to investigate virtual

spaces coded by brain energy fields. Besides, it would be

too risky to assume that integration of information happens

only between the neighbouring voxels in brain activity;

long-range connections can also participate in virtual field

creation. The roles of short- and long-range connections in

coding virtual spaces are also perspectives for future

research.

Conclusions

As can be seen from the above exposure, the fundamental

conception of energy can be applied to the brain function

and can be rather intuitively developed on the basis of the

known physical principles such as energy conservation and

thermodynamic laws. Even in its most general and

descriptive form, the energetic approach to brain function

provides a unique framework to consider molecular and

cellular processes, population-level organization of brain

activity as well as information treatment, which turns out to

be directly related to brain energy. No other approach to

brain function comprises the whole set of its levels in

intimate coupling with information treatment, and no other

approach permits integrating the approaches of different

disciplines to brain function: cognitive psychology, phys-

ics, mathematics, molecular biology, biochemistry, cell

physiology, etc. Hypotheses in different domains could be

derived from the same basic principles of brain work. This

concerns not only mathematical hypotheses but psycho-

logical and cognitive hypotheses as well.

Neuroenergetic considerations provide the novel per-

spectives of information coding by brain energy fields

including the studies of virtual spaces for cognitive pro-

cessing coded by these fields. Thus, we consider the recent

direction of neuroenergetics, the most prospective direction

of cognitive neuroscience.
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