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Abstract. Increasing evidence suggests that sensory stimulation not only changes the level of cortical activity
with respect to baseline but also its structure. Despite having been reported in a multitude of conditions and
preparations (for instance, as a quenching of intertrial variability, Churchland et al., 2010), such changes remain
relatively poorly characterized. Here, we used optical imaging of voltage-sensitive dyes to explore, in V4 of an
awake macaque, the spatiotemporal characteristics of both visually evoked and spontaneously ongoing neuro-
nal activity and their difference. With respect to the spontaneous case, we detected a reduction in large-scale
activity (cortical extent > 1 mm) in the alpha range (5 to 12.5 Hz) during sensory inflow accompanied by a
decrease in pairwise correlations. Moreover, the spatial patterns of correlation obtained during the different vis-
ual stimuli were on the average more similar one to another than they were to that obtained in the absence of
stimulation. Finally, these observed changes in activity dynamics approached saturation already at very low
stimulus contrasts, unlike the progressive, near-linear increase of the mean raw evoked responses over a
wide range of contrast values, which could indicate a specific switching in the presence of a sensory inflow.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.4.3.031222]
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1 Introduction
Over the last 20 years, the view on spontaneously ongoing
activity has changed from essentially random noise—to be
eventually discarded as a nuisance to study stimulus-dependent
response features—to a nonrandom network activity of the same
order of magnitude as that evoked by a sensory input1 and inter-
acting with the latter.2–6 In particular, it has been reported that
the spatiotemporal structures of such activity as measured with
optical imaging of voltage-sensitive dyes (VSDs) share similar-
ities with evoked responses,7 and it has thus been suggested that
spontaneous activity reflects or influences memory, perception,
and behavior. Moreover, chronic multielectrode recordings have
recently provided strong evidence that ongoing activity is shaped
during development by the sensory inputs and that in their
absence, it displays dynamics that are characteristic of the most
common inputs that a given area has processed in the past.8

The literature also abundantly documents changes in the sta-
tistics of neuronal activity during or following stimulation. For
instance, a reduction in the variability of neuronal activity across
trials has been reported, both in the form of spiking activity and
membrane potential changes9–14 and in the form of hemodynam-
ics measured by blood oxygenation level dependent functional
magnetic resonance imaging.15 A recent study16 has systemati-
cally investigated these changes in response variability in pri-
mary visual cortex, in the across-trial sense as well as in the
sense of the temporal fluctuations of the single-trial response

with respect to the trial mean (our “noise signal,” see below),
and modeled them within a sampling-based probabilistic repre-
sentation framework. An early transient drop in the correlated
variability of the spiking of neuronal pairs has also been
reported.17,18 Finally, in anesthetized rat barrel cortex, brief sen-
sory stimulation has been shown to induce a decrease in ongoing
activity lasting several seconds,19 i.e., far beyond the end of the
sensory inflow itself.

Despite this multitude of experimental studies, however, a
detailed spatiotemporal characterization of the sensory-induced
modifications in the structure of neuronal activity—its statistics
and its variability in particular—is still missing, especially in
the awake primate.

Here, we provide such information in the form of neuronal
population data obtained in extrastriate area V4 of an awake
macaque monkey, during the presentation of full-field drifting
isoluminant or luminance-based gratings and during the presen-
tation of a uniformly gray screen. As a recording technique, we
used optical imaging of VSDs because in typical VSD imaging
settings in vivo, each pixel averages the signals from 150 to 200
neurons,20 allowing to overcome—to a great extent at least—the
sampling issues affecting microelectrode recordings (including
multielectrode arrays). In addition, the excellent spatial resolu-
tion of VSD imaging (∼30 μm), its large field of view, and its
high temporal resolution (here over 10 mm2 and 10 ms∕frame,
respectively) provide access to a substantial part of the cortical
dynamics in the area of interest. As a result, we could character-
ize, at the subcolumnar resolution, the full spatiotemporal
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dynamics of neuronal population activity during the whole
recorded trial (here nearly 1 s), over an area the size of several
cortical columns.

Our first finding is a decrease of global (>1 mm) activity in
the alpha frequency range following sensory stimulation, both in
the raw signals and in what we call the “noise signal,” i.e., the
deviation, at the single trial level, of the signal from the trial
average.

Second, we report a sensory-induced reduction in pairwise
correlation of this noise signal (for details and a comparison
with “classical” variability and correlations, see Appendix A).
In addition to and beyond a similar correlation drop reported
previously,21 here we provide a detailed characterization of
these changes in correlation in the spatial, temporal, and, in
particular, the spectral domain.

Our last finding concerns the peculiar contrast dynamics of
some of these sensory-induced changes in the spatiotemporal
structure of cortical activity, which was already saturated for
visual stimuli of very low contrasts, in a range where the raw
response amplitudes still grew near-linearly. Together with
our data on the spectral structure of sensory-induced changes
in cortical dynamics, this last result might provide experimental
testing ground to recent modeling efforts18 aimed to explain
cortical dynamics in V1, which, as opposed to most other stud-
ies, investigated not only intertrial variability but also the vari-
ability of noise within trials, its pairwise correlation between
cells, and the dependence of those variables on stimulus
contrast.

2 Methods

2.1 Preparation

Experiments were performed on one adult male monkey
(Macaca mulatta), with a transparent cranial window chronically
implanted onto a 1.8-cm diameter aperture in the skull above
visual area V4, comprehending ∼2.5 deg to 15 deg eccentricity
of the visual field. For a detailed description of all surgical and
maintenance procedures, see Refs. 22 and 23 and the references
therein. Before imaging, the cortex was stained for 3 h via super-
fusion with RH 1691 or RG 1883 (for details, see Ref. 22). All
procedures were approved by the local ethical committee and
were in accordance with European guidelines.

2.2 Experimental Paradigm

The paradigm in the alert monkey experiments was a simple
fixation task. A trial started when the monkey began fixation
on a fixation point (size: 0.1 deg to 0.15 deg), displayed on
an otherwise uniformly gray cathode ray tube (CRT) screen
[of color and luminance coordinates ðx; y; YÞCIE1931 ¼ ð0.284;
0.322; 43.7Þ in CIE1931 color space]. After 100 ms, a drifting
sinusoidal grating appeared for 0.6 s, except in the “blank” con-
ditions (no grating). The stimulus was then turned off, and the
monkey had to continue to fixate until the fixation point disap-
peared, for a total fixation period of 1 s (including for blank
trials). In the present study (and as opposed to other projects
performed some months later), the monkey did not have to
report on any aspect of the stimulus, such as orientation, direc-
tion of motion, or the like. Data from trials where the monkey
broke fixation were rejected. To allow for the relaxation of all
hemodynamic signals, an intertrial interval of ∼10 s followed
during which the CRT screen was uniform gray. All gratings

were centered on the same white point ½ðx; y; YÞCIE1931 ¼
ð0.284; 0.322; 43.7Þ�, and so were the interstimulus and intertrial
stimulus, which consisted of a uniform gray screen (identical to
the blank, but without the fixation dot).

The stimuli were binocularly presented horizontal and
vertical sinusoidal gratings, having a spatial frequency of
0.2 cyc∕ deg and drifting at 16 deg ∕s in one of the four cardinal
directions (amounting to a temporal frequency of 3.2 Hz). The
gratings could be isoluminant (in the sense of the mean human,
the “standard CIE1931 observer”), i.e., based on color (red–
green) or on luminance contrast (dark and bright gray). The
stimuli in the two categories were matched for root mean square
(RMS) cone contrast:CCRMS¼sqrtf1∕2½ðDL∕LÞ2þðDM∕MÞ2�g,
where L and M stand for the average activity of long and
medium wavelength cones, respectively, and DL, DM, and
DS denote the amplitude of the L and M cone activity modu-
lation by the drifting grating with respect to the average.24 The
gratings were presented at six different contrast levels (5%,
10%, 20%, 40%, 80%, and 100%), where 100% corresponds to
the maximal modulation in the red–green direction the CRT
monitor could deliver: CCRMSðred versus greenÞ ¼ 0.182. This
means that, expressed in CCRMS contrasts units, our stimuli had
RMS cone contrast values of 0.0091, 0.0182, 0.0364, 0.0728,
0.1456, and 0.182.

2.3 Optical Recordings

Data were acquired in three sessions at a distance of a few weeks
one from another. Optical recordings were performed at a fram-
erate of 110 Hz, with a commercial imaging system (Imager
3001, Germantown, Maryland), adapted for the behaving
monkey.23 The exposed cortex was illuminated (100 to 150 W
tungsten halogen lamp, Zeiss, Germany) through a 20-nm band-
pass interference filter centered at 630 nm by a dichroic mirror
with a cutoff at 650 nm (respectively, 630DF20 and 650DRLP,
Omega Optical, Brattleboro, Vermont). Fluorescence was col-
lected through the same dichroic mirror and an additional red-pass
filter, having a cutoff at 665 nm (RG 665, 3-mm thick, Schott,
Germany). Data were acquired in recording sessions of ∼3 h.

2.4 Data Preprocessing

Raw data were initially corrected for bleaching and heartbeat
artifacts. Bleaching artifact was removed simply by fitting and
removing two exponentials from the time courses of each pixel
and every trial (the time constants of these exponentials were
first estimated on the average blank signal over all trials and
pixels, and only their amplitudes were fit to every individual
trial and pixel).

Heartbeat artifact removal was particularly delicate, as heart-
beat-related signals at 2 to 3 Hz had similar frequency content
with the evoked responses. First, the phase of the heartbeat cycle
was estimated in every trial using a Hilbert transform at around
2.5 Hz performed on signals averaged from a region of interest,
where heart contamination was strong and from which the aver-
age responses to the stimuli were subtracted. Second, a general
linear model estimation was performed on all blank trials
(from the same session) to estimate for every pixel a canonical
contamination signal during one heart cycle—this signal was
assumed to change smoothly from a first template at the begin-
ning of the session to a second template at the end of the session.
These two estimations, once combined, allowed reconstituting
the heart artifact in every trial and pixel and subtracting it.
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Two additional preprocessings were performed on these cor-
rected signals: signals were divided by average responses to the
different stimuli so as to keep only fluctuations that constitute
the intertrial variability, and a low-pass filter at cutoff frequency
of 25 Hz (using a Gaussian mask in the Fourier space) removed
high-frequency content that mostly contained photonic and
camera noises. The text refers to the data after bleaching and
heartbeat correction as “raw signals” and after the additional
normalization and filtering as “normalized signals.” Importantly,
no filtering was used before the spectral analysis (Fig. 4).

2.5 Data Analysis

In general, analyses were performed on signals restricted to
specific time windows (the “onset period” 0 to 250 ms after
stimulation onset and the “plateau period” 250 to 700 ms after
stimulation onset). Before computing power, correlations or
applying Fourier transform in these time windows, the signals
were systematically detrended to prevent edge effects as much
as possible.

Signal power [Fig. 2(a)] was computed individually in every
pixel, then averaged over pixels and trials of the same condi-
tions. Signal correlations [Fig. 2(b)] were computed first for
every pixel pair, then averaged over pixel pairs and over trials.
For computing these quantities over all three sessions together
[top panels in Figs. 2(a)–2(b)], trial averaging was performed on
all trials from the three sessions pooled together.

For the grouping of pixels according to distances for the spa-
tial analysis [Fig. 3(b)] and the correction of correlations by an
estimated “distance effect” [Figs. 3(c) and 3(d)], we proceeded
as follows:

First, we grouped pixel pairs into six bins according to the
distance between the members of a pair (150 to 300 μm, 300 to
550 μm, 0.55 to 1.0 mm, 1 to 2 mm, 2 to 4 mm, and 4 to 7 mm).
Next, to emphasize condition-dependent details in the spatial
structure of the correlations, we “corrected” the spatial pattern
of pairwise correlation with respect to the stereotyped decay of
correlation with increasing distance [Figs. 3(a)–3(c)]. To do so,
we estimated how the average correlation varies as function of
distance by fitting a polynomial to our data points from the
spontaneous activity [Fig. 3(c)] and divided, for each condition,
the correlation values found at any given distance by the values
predicted for the same distance by this polynomial.

To compare spatial patterns of correlations between different
conditions, we first increased the signal-to-noise ratio by bin-
ning pixels 3 × 3 and conditions 2 × 2 (except the blank condi-
tion, which already had twice as many repetitions as the other
conditions). Then, correlations were computed for every pair of
those “large pixels,” averaged over trials from the same group of
conditions, and “corrected” for the distance effect as described
above. The results are vectors whose number of elements is the
number of “large pixel” pairs. For example, Fig. 3(d) displays
only subparts of these vectors, as it displays the average “cor-
rected” correlations only for those pairs of pixels where one is
the seed pixel (in white in the figure). The comparison between
these vectors—which are nothing more than rearranged spatial
patterns of correlation—is obtained by simply calculating the
correlations between these vectors [Fig. 3(e)]: the higher the
latter, the more similar are the former.

For the spectral analyses, the low-pass filtering step of the
preprocessing was not performed. Spectrograms [Figs. 4(a)–
4(d)] were obtained by cross-correlation with a Morlet wavelet
at different scales (MATLAB function cwtft). Fourier transform

was applied to all signals from which the powers at different
frequencies [Fig. 4(e)] could be directly obtained and were as
above averaged over pixels and trials. For correlations at differ-
ent frequencies [Fig. 4(f)], one has to consider that the corre-
lation between two sine waves is equal to the cosine of their
phase lag: we, therefore, extracted phase lag at individual
frequencies for every pair of pixels (as the difference between
the angle of complex Fourier values) and took the cosine. Then
again, these correlation values were averaged over pixel pairs
and trials.

3 Results

3.1 Voltage-Sensitive Dyes imaging Data Recorded
in V4 of the Awake Macaque Monkey

Our study aimed at comparing the spatiotemporal structures of
spontaneous and sensory-driven activities in extrastriate visual
area V4 [Figs. 1(a) and 1(b)], a region that is involved in vision
and visual attention (for a review, see Ref. 25), but whose
organization is known in somewhat less detail than earlier visual
areas, such as V1. We recorded population activity using VSD
imaging,26 which allowed us to record from a large area of sev-
eral square millimeters of cortex at a spatiotemporal resolution
of, respectively, 30 μm and 10 ms [Figs. 1(c)–1(f), see Sec. 2].

An awake macaque monkey trained for fixation was pre-
sented with a set of drifting luminance or isoluminant gratings
at different contrast levels (see Sec. 2). The contrast of the iso-
luminant gratings (also called “color gratings” in the following)
was purely (in the sense of the standard CIE1931 observer)
chromatic (red–green), and the set of stimulus contrast values
were chosen so as to evoke the same RMS cone contrast as cor-
responding luminance gratings (the maximal contrast displayed
in conditions “luminance-100” and “color-100” had an RMS
cone contrast of 18.2%—close to the maximum allowed by
the color gamut of our CRT monitor). At the onset of each
trial, a small fixation dot appeared on the screen—both in
the “blank” (i.e., no stimulus) and stimulated conditions—
and remained on until the end of a trial. In stimulated trials,
a grating was displayed for 0.6 s after a delay of 100 ms. In
the blank trials, the screen remained uniformly gray (except for
the presence of the fixation dot), as during the intertrial and
interstimulus times. All stimuli, i.e., luminance and isolumi-
nance gratings, as well as the blank and interstimulus screens,
were centered on the same luminance and gray color.

Figures 1(d) and 1(e) show examples and average responses
from these 13 different conditions. In our comparisons of cort-
ical dynamics during stimulated trials and spontaneous activity,
we separated the effects of the average evoked response from
those of trial-to-trial remaining variability (“noise”): all individ-
ual trial time courses belonging to a given condition were
divided by the time course averaged over all trials of the
same condition, yielding “noise signals” [Fig. 1(f)], which we
also refer to as “normalized signals” in the following. Some
components of this noise were removed, as they are known
to be dominated by camera noise (high-frequency component
above 25 Hz) or slow hemodynamic signals (linear drift, see
Sec. 2). The 600-ms stimulation time period was divided into
two parts: the first 250 ms corresponding to the “response
onset” and the remaining 350 ms corresponding to its “plateau.”

It is common practice to investigate the structure of the noise
in sensory-evoked responses by quantifying variability between
trials (“intertrial variability”) in terms of Fano factor and
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correlations between signals recorded at different spatial
locations.12,15,19 However, such quantifications are problematic
when analyzing VSD imaging signals because of a number of
slow drifts in the fluorescent signals (with a time constant in the
order of the duration of a trial or slower) due, e.g., to bleaching
or hemodynamic responses. Because of these drifts, the time
course of each individual trial needs to be normalized by the
average of its first frames, such that the signals express changes
relative to these first frames rather than “absolute” population
activity.

Despite the above shortcomings, however, VSD imaging is
well suited to quantify fast activities, in frequency domains
above 1 Hz, at the population level at high spatiotemporal res-
olution. We focused our analysis on the study of the spatiotem-
poral characteristics of individual trials, and later averaged the
resulting quantifications over all trials during which the same
stimulus condition had been used.

3.2 Decrease in Temporal Variability and in Spatial
Correlation During a Sensory Input

We first measured the power of the noise signal time courses,
i.e., the RMS of the variability over time of the individual
pixel values, and then averaged over all pixels within a
mask [Fig. 1(c)] and over all trials from the same condition.
We found that on the average, the power of noise signals is
lower during the plateau period of stimulated conditions
than during spontaneous activity [Fig. 2(a)]. This result also
holds true without normalization by the average responses
(not shown). During the response onset period, on the contrary,
temporal variability was found to be higher than during
spontaneous activity. This was probably due to an ineffective
removal of the evoked responses by the average response nor-
malization procedure because of large intertrial differences in
onset delay and amplitude [not shown, but see later comments
on Fig. 4(b)].

We then measured the correlation between the noise signal
time courses recorded from pairs of pixels [e.g., the signals
shown in Fig. 1(f), which originate from the pixels as shown
in Fig. 1(c)] and averaged over all pairs and trials [Fig. 2(b)].
As in the case of the time courses’ power, their pairwise corre-
lations during the plateau period of stimulated conditions were
on the average lower than during spontaneous activity. However,
this decrease in correlation was considerably more pronounced
than that of temporal variability (on average −37.4% versus
−6.9%, in relative units). To better visualize this result and
the relation between these two variables, we displayed the
spatial activity patterns appearing in the noise signal along
one spatial dimension as a function of time [Fig. 2(c)], both
for stimulated and blank conditions. Whereas global activity
patterns (in space) did occur both in the case of spontaneous
and sensory evoked activity, they occurred more often in the
former case as can be seen qualitatively in Fig. 2(c). The
same result is confirmed quantitatively by the distributions of
correlation values in Figs. 2(d)–2(e) (note that the very same
trials had high variability and high correlation values).

With respect to more traditional definitions of intertrial vari-
ability and noise signal correlations, our quantification of vari-
ability and correlation in the time domain have the advantage
of not being affected by the slow drifts present in VSD imaging
signals. In addition, they allow detailed characterizations in the
spectral domain (see Sec. 3.4). In Appendix A, we develop the
mathematical details of both approaches and how they relate to
each other. Indeed, intertrial variability could not be properly
evaluated for our VSD imaging data due to such slow drifts.
Fig. 2(f) quantifies the variability over trials of the noise signal
as RMS, averaged over the plateau period and over all pixels:
the average RMS of the intertrial variability value, some
5 × 10−4 [Fig. 2(f)], is more than twice as large as the average
RMS of the temporal variability [Fig. 2(a)]. This large noise
hampers the comparison of the intertrial variability of different
conditions.
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Fig. 1 VSD imaging data. (a) The recording window was centered on
the dorsal part of V4 of an adult rhesus monkey. (b) Image of the sur-
face vasculature obtained upon illumination with green (540 nm) light.
Scale bar in (b) and (c): 1 mm. (c) Fluorescence image of VSD. For the
analysis, the camera pixels were binned 3 × 3 to yield 150-μm sized
data pixels. To exclude noisy pixels from the analysis, the latter was
restricted to pixels lying within the black contour, i.e., to a region where
fluorescence intensity was large. (d) Example time courses for one
individual trial of each of the 13 different conditions: “color” (i.e., iso-
luminant red–green) gratings at six different contrasts, luminance gra-
tings at six RMS cone contrasts equivalent to the color ones, and gray
screen presentation, called “blank.” Signals were obtained by averag-
ing all pixels within the mask in c, and after removal of bleaching,
heartbeat, and motion artifacts. The gray shading shows the time
of the stimulation, from 100 to 700 ms after data acquisition start.
(e) Time courses averaged over all trials belonging to each given
condition. (f) Two examples of “noise” or “normalized” signals, i.e.,
individual trial time courses normalized by dividing them, point by
point in time, by the response average over all trials belonging to
the corresponding condition (additionally, signals were high-pass
filtered at 25 Hz and detrended). Bottom and top pairs of traces
correspond to two different trials; within each pair, the traces were
obtained from two different pixels [squares in (c)]. The dashed line
splits the stimulation period into two phases: response “onset” 100
to 350 ms and response “plateau” 350 to 700 ms. Here and in all
other figures, the contrast values of the visual stimuli are expressed
in % of the maximal color gamut attainable by the CRT screen.
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One may wonder if the decrease of a global signal alone can
account for the strong −37.4% decrease in correlation while rep-
resenting only a mild −6.9% decrease in total power, or if on the
contrary, a concomitant increase in uncorrelated (or only locally
correlated) signals is needed to explain such a weak power drop.
We treated this question analytically (somewhat simplifying the
real case assuming two regions of interest only: see Appendix B
for details) and found that a decrease in global signal alone is

indeed compatible with our data. As a side note, we even found
that, at average correlation values as low as 0.2, the ratio
between correlated and uncorrelated activities is such that
decreases in global activity can lead to 8 times larger decreases
in correlations. We stress, however, that the measured signals are
contaminated by an important photonic noise, which is by
essence uncorrelated. Therefore, the “true” membrane potential
signals are likely to have higher average correlations than 0.2,
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according to luminance, color, and blank, showing a clear shift of the blank distribution toward higher
correlations. (f) Trial-to-trial variability. RMS over trials were calculated [the same processing as in
Fig. 1(d), i.e., no normalization] and averaged over all pixels within the mask and over the whole duration
of the plateau period. No clear result could be observed, as a probable consequence of slow drifts in the
VSD signals, with a time constant in the order of the intertrial interval. Here and in all other bar displays of
this work, darker gray and increasingly saturated red signify increasing stimulus contrast. The white bar
stands for the unstimulated condition.
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and thus to experience smaller correlation drops than the ones
we observe in our signals, given the same reduction in global
activity.

3.3 Spatial Structure of Correlations

Next, we further characterized the spatial structure of the
correlations between the noise signals recorded from different
locations and their changes across conditions. The most promi-
nent spatial feature is a decrease of correlation with distance
[Fig. 3(a)], which, modulo a multiplicative factor most likely
due to the different kind of recorded signals (multiunit versus
VSD imaging), is—in relative terms—compatible with the
decline reported by Ref. 21.

To investigate how correlation changes across conditions at
different spatial scales, we thus grouped pixel pairs according to
their distance. Figure 3(b) and Table 1 show that these changes
were rather similar at all spatial scales, with a slight tendency of
the relative difference in correlation between evoked and
ongoing activity to increase with distance between the points
for which the correlation was calculated.

The decrease of pairwise correlation with distance creates a
strong spatial pattern. We thus wondered whether it might not
be masking weaker, condition-dependent, spatial structures. To
access such finer structures, we estimated how the average cor-
relation varies as a function of distance by fitting a polynomial to
our data points from the spontaneous activity [Fig. 3(c)] and
corrected the correlation values for this distance effect in all
conditions (see Sec. 2). To increase the signal-to-noise ratio,
we moreover binned the pixels 3 × 3 and grouped the condition
contrasts 2 × 2. Examples of the resulting “average correlation
corrected” maps are shown in Fig. 3(d), each displayed at its
own color scale based on its mean and standard deviation
(std.) to get rid of the overall correlation decrease in the stimu-
lated conditions with respect to the spontaneous case.

Figures 3(b) and 3(d) show that, indeed, correlation did have
a specific spatial structure. Note that this structure was similar
throughout conditions: it can, therefore, not be attributed to ran-
dom noise. Moreover, the example shown for one seed pixel in
Fig. 3(d) suggests a higher similarity of the spatial structure of
correlations among stimulated conditions than between any
stimulated condition and spontaneous activity. We, therefore,
quantified this similarity between spatial correlation patterns
using a distance (being itself based on correlation, see
Sec. 2) and averaged over all seed pixels. The results are dis-
played in Fig. 3(e) and confirm and generalize what is shown
in Fig. 3(d): after average over all seed pixels, the “fine spatial
structure” of correlations between sensory-evoked activities in
different locations is more similar among different stimulated
conditions than it is between a stimulated and a nonstimulated
one.

3.4 Spectral Structure

To further characterize the differences in temporal variability
and correlations between spontaneous and evoked activity,
we investigated the signals’ various frequency components.
First, we performed time-frequency analysis of the raw [i.e.,
nonnormalized as in Fig. 1(d)] signals using a wavelet transform
[Figs. 4(a)–4(b)]. With respect to spontaneous activity, the
evoked activity displayed two main characteristics. First, a
clear increase in power is in the range of 5 to 10 Hz during
the response onset phase—the larger the increase, the stronger
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Fig. 3 Spatial analysis. (a) Example maps of the correlations between
a seed pixel and all pixels within the mask [see Fig. 1(c)], during
the plateau period of the normalized signals, for a subset of the
used contrast levels (data from session 1). As expected, correlation
decreases with distance and is altogether lower in the case of
sensory-driven activity than during blank. (b) Correlations averaged
over pixel pairs grouped according to their distance range (average
result over all sessions). (c) Polynomial fit of the correlation during
the blank stimulus as a function of distance between pixels. Each
point represents one pixel pair from the same session as in a
(each session was fitted independently, shown data stem from ses-
sion 1). (d) Fine structure in correlation patterns (the same session as
shown in a); to increase signal-to-noise ratio pixels were grouped 3 ×
3 and condition contrasts were grouped 2 × 2. Moreover, the distance
effect on correlation was removed by normalizing by its estimation
(see c); finally, to get rid of the global correlation decrease in stimu-
lated conditions, we display the correlation maps after normalization
by their mean and std. (i.e., conversion into z-scores). (e) Distances
between correlation patterns of the different conditions. As shown in
a more graphical way already in (d), the correlation maps obtained
from the stimulated conditions are more similar one to another than
they are to that obtained from spontaneous activity.

Table 1 Relative difference in correlation between the spontaneous
activity and the evoked activity at various spatial scales. Positive val-
ues indicate a correlation drop with respect to spontaneous activity.

150 to
300 μm

300 to
550 μm

0.55 to
1 mm

1 to
2 mm

2 to
4 mm

4 to
7 mm

Correlation (%) 30 34 36 37 38 41
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the stimulus contrast. Second, we observed a power decrease in
the range of 5 to 15 Hz during the plateau period, the amplitude
of which was independent of stimulus contrast.

When the same wavelet transform was applied to the “noise”
signals (i.e., after normalization by the average response for a
given condition), the increase at 5 to 10 Hz during the response
onset was largely reduced as expected [Figs. 4(c)–4(d)]. The
small rests of this increase in signal power are probably due
to some intertrial variability in the delay and amplitude of
the individual response onsets, which prevent their complete
removal by average response normalization. On the other hand,
the decrease of activity in the range of 5 to 15 Hz not only
remained but was even more pronounced after normalization
and far beyond the noise level [quantified in Fig. 4(c)].

For a more rigorous quantification of stimulus-induced
changes in the noise signals, we calculated their Fourier trans-
form restricted to the plateau period. In this way, one gains
access to power [Fig. 4(e)] and correlation [Figs. 4(f) and
4(g)] in different frequency bands (see Sec. 2). Table 2 sum-
marizes the observed differences between spontaneous activity
and the average over all stimulated conditions. Temporal vari-
ability (expressed here as Fourier power) was lower in the case
of evoked activity compared with spontaneous activity, in par-
ticular in the 2.5 to 10 Hz band, with a maximal relative differ-
ence of 12% at 2.5 Hz. The same was observed for correlation
(for details on calculations, see Sec. 2), with an even larger
peak drop of 55% at 7.5 Hz, even at the lowest contrasts.
Together, Figs. 4(e) and 4(f) quantify what can be already
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Fig. 4 Time-frequency analysis. (a–b) Raw signals. Spectrograms were computed for every condition
and averaged over pixels, trials, and sessions. The x - and y -axes represent time in s [the 600-ms stimu-
lation period in (b) is marked by the gray bar and the grid] and frequency in Hz, respectively. The image in
a shows the time-frequency decomposition of spontaneous activity (blank trials). Panel (b) shows the
time-frequency decomposition of evoked activity (stimulated trials), relative to the spontaneous one
(i.e., after division by a). To give an indication of the level of noise, the image in (c) compares odd
and even blank trials. Two main phenomena can be observed in (b): an increase in the range of 5
to 10 Hz component’s power during the response onset and a decrease in the range of 5 to 15 Hz com-
ponent’s power during the plateau period at all contrast. (d) the same as (b), but on what we call the “noise
signals,” i.e., on the signals normalized by the trial-averaged signal. Note that most of the positive
response [red in (b)] is lost due to the removal of the average stimulus-evoked response by the normali-
zation. (e–f) Bar display of power and correlation calculated on the normalized signals during the plateau
period, selectively for different frequency bands [unlike in (b) and (d), without division by the spontaneous
activity]. These two quantities decrease during sensory-driven activity, in particular in the range of 5to
12.5 Hz.

Table 2 Relative changes in power and correlation between the spontaneous and evoked activities at different frequencies (the same sign con-
ventions as in Table 1).

2.5 Hz 5 Hz 7.5 Hz 10 Hz 12.5 Hz 15 Hz 17.5 Hz 20 Hz

Power (%) 12 12 10 5 3 2 0 0

Correlation (%) 18 44 55 30 26 37 24 25
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Fig. 5 Synthesis. (a) Spatiotemporal power spectrum of the noise signal during blank and stimulated
conditions. Each spatiotemporal bin sums the power values contained in the specified temporal and
spectral intervals. Note the large, high temporal frequency and spatially uncorrelated shot-noise com-
ponent, as well as the global components in the low spatial frequency range. (b) Power ratio, showing
the reduction of low spatial and mid-low (alpha range) temporal frequency components in stimulated
versus blank conditions. (c) Different contrast-response dynamics, average over trials and sessions:
quantities that change with stimulus contrast were normalized between 0 and 1 (based on the base-
line and plateau of the fitting sigmoids) and displayed together, (o) the amplitude of the average
responses [Fig. 1(e)], averaged during the response peak, i.e., between 230 and 300 ms. (Δ) the
initial, positive, responses in the range of 5 to 10 Hz [Fig. 4(b) and 4(d)]. (+ and ×) the decrease
in temporal variability [Fig. 2(a)], in correlation [Fig. 2(b)] and in power in the range of 5 to 15 Hz
[Figs. 4(b) and 4(d)], during the plateau period. (*) the differences in the spatial patterns of correlation
found during spontaneous activity and during stimulated conditions [Fig. 4(f)]. Two main different con-
trast response functions can be observed: on the one hand, response amplitudes start to increase at
contrast 10% and saturate between contrast 20% and 80%; on the other hand, the changes in vari-
ability and correlation are already saturated or close to saturation at contrast 5% and the same is true
for the power undershoot in the range of 5 to 15 Hz band. (d) as (c), but for single sessions (average
over trials). (e) 5% contrast response histogram for all trials and classes of cortical variables, showing
a clear bimodal distribution: each count in the left or right clusters corresponds, respectively, to one of
the red–black or the magenta–blue curves in (d)–(f) Sigmoid fits to the data in (d). (g) The difference in
the 50% sigmoid contrasts observed between trials belonging to the first class of variables [“raw
response amplitudes,” red and black in (c, d, f)] and the second class [“difference with respect to
blank,” magenta and blue in (c, d, f)] is statistically highly significant.
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seen qualitatively in Fig. 2(c): at the population level, during
the stimulated conditions, the blobs of activity patterns tend to
become smaller in both the spatial dimension (reduced corre-
lation) and in the temporal one (less low-frequency compo-
nents) compared with the blank conditions. A summarizing
comparison of the spatiotemporal dynamics during visual
stimulation and the blank is shown in a synthesis view in
Figs. 5(a)–5(b).

3.5 Different Classes of Variables have Different
Contrast Response Gains

Our results show that the sensory-evoked decrease of variability
(the power) of “noise” signals and their spatial correlation
reached saturation at very low contrast values, if not at the low-
est one [Figs. 2(a)–2(b), 3(b)–3(c), 3(e), 4(d)–4(f)]. The contrast
dependency of the average raw responses was strikingly differ-
ent [e.g., see Fig. 1(e)]: there, a rather gradual amplitude
increase was observed, starting from weak, if any, response
to the lowest stimulus contrast, increasing gradually and satu-
rating only at the highest contrast values, if at all [Fig. 5(c)].

To further investigate this difference in contrast gains, we
analyzed the distribution of the various variables’ contrast
dynamics for the individual sessions [Fig. 5(d)]. Like the
grand average responses in Fig. 5(c), the single session ones
also split into two populations, corresponding to the cortical
activity variables mentioned above: an abrupt decrease in
“noise signal” (i.e., temporal variability) and its alpha-range
power, as well as an abrupt drop in its pairwise correlations
and their spatial difference with respect to the blank (magenta
and blue in Fig. 5), as opposed to the amplitude of the raw
responses, which changed only gradually with stimulus contrast
(red and black in Fig. 5). At the critical contrast level of 5%,
where the differences between the various variables were
largest, the distribution of their contrast dynamics was clearly
bimodal even upon considering simply the raw data points
[Fig. 5(e)], yielding a p value of 1.4 × 10−3 when tested against
a unimodal distribution (Hartigan’s dip test). To test whether
there were also two different contrast dynamics over the full
contrast range (and not only at the 5% contrast value that dis-
played clear bimodality), we first fitted the data points in
Fig. 5(d) with sigmoids [Fig. 5(f)]. Then, we compared their
50% contrast values by separating their populations into the
two classes [left and right columns in Fig. 5(g)] obtained from
the histogram in Fig. 5(e). Again, the difference between the
distribution split into two populations in a highly significative
way (p value ¼ 1.08 × 10−4), strongly supporting the notion
of two different classes of cortical activity variables.

We summarized these facts in Figs. 5(c)–5(g), which indeed
show two different shapes of contrast response functions, both
at the grand average level and at the individual session level. A
first one, that applies to different quantifications of the (raw)
response onset, begins to increase at contrast value 10 and sat-
urates between contrast values 20 and 80 (somewhat depending
on the type of stimulus and the particular response quantifica-
tion). The second one, that applies to the changes in temporal
variability of the noise signals, their average spatial correlation,
and correlation structure, as well as to the delayed alpha band
(5 to 15 Hz) undershoot in both the raw and the noise signals,
essentially saturates already at contrast value 5.

4 Discussion

4.1 Spatiotemporal Characterization of
Spontaneous and Sensory-Driven Cortical
Dynamics Using Voltage-Sensitive Dyes
Imaging

As opposed to previous studies that mostly focused on intertrial
variability and that reported its reduction as a result of sensory
input,9–14 here, we characterized the changes in spatiotemporal
dynamics of cortical activity occurring during sensory inflow, in
full detail and at high resolution in cortical area V4 of an awake
macaque monkey.

Our first—and perhaps most important—result is that a par-
ticular type of activity is reduced during sensory inflow, namely
slow-wave activity with prominent power at spatial scales larger
than 1 mm and temporal frequency in the alpha range and below
[Figs. 5(a)–5(b)]. In addition, we propose that this phenomenon
is at the origin of the decrease in variability reported both by
ourselves and by others, in the temporal sense (our “noise sig-
nal”) as well as in the intertrial sense9–14 (under some reasonable
assumptions and for large trial numbers the two actually
coincide, see Appendix A). Importantly, such a reduction of spa-
tially global activity can also explain the sensory-evoked reduc-
tions in pairwise correlations detected both in the present study
and by others21 (at least at first-order approximation, see the next
section).

Such results emphasize the relevance of wide-field VSD im-
aging for studying the spatiotemporal structure of cortical
activity. Indeed, although lacking single-cell resolution, VSD
imaging is ideally suited for imaging the activity of compara-
tively large neuronal populations in vivo, providing an excel-
lent combination of temporal and spatial resolution (in our
hands: 110 Hz and, laterally, some 30 μm, which is clearly
finer than the typical dimensions of cortical columns) and
field of view (750 ms, >10 mm2). Moreover, VSD imaging
is complementary to (multi-)electrode recordings, first, because
it does not suffer from sampling issues (at least not the same
ones as multielectrode recordings: VSD imaging indeed lacks
depth resolution/penetration); second, it also provides different
information on the local network activity. Indeed, the VSD im-
aging signal reflects the average membrane potential changes
of the neuronal processes below a given pixel and is, therefore,
biased toward information processing by the local network
rather than toward the network’s output—as is the case
when recording spikes (for a biophysical modeling of the
VSD imaging signal, see Ref. 27). On the other hand (and dif-
ferently from electrophysiological recordings), VSD imaging
signals are more suitable to record relative changes in activity
rather than absolute ones. Indeed, even if the relation between
membrane potential and fluorescence is assumed to be lin-
ear,28,29 the parameters (offset and slope) of this linear relation-
ship are not only unknown but may also change from one pixel
to another as well as during the course of the experiment
(although slowly). This makes it problematic to extract abso-
lute activity values from the VSD imaging signals such as
absolute membrane potentials or numbers of spikes. VSD im-
aging is thus less suitable to investigate signal changes slower
than 0.1 Hz, as is needed in the case of intertrial variability,
which could indeed not be investigated with the methods
used here [Fig. 1(f)].
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4.2 Mere Reduction of Specific Activity or Network
Reconfiguration?

Although in our data, the most obvious change in network activ-
ity induced by sensory input appears to be the reported decrease
in slow global activity, one may wonder whether other, more
complex, changes also occur. In particular, is the drop in spatial
correlation entirely due to decreased global activity or does
uncorrelated activity increase, too?

Our theoretical investigation (Appendix B) showed that, at an
average correlation value of 0.2, the observed decrease in global
(and therefore correlated) activity (−6.9% in average) is—in
principle—enough to account for the large decrease in pairwise
correlations (−37.4%).

However, the above theoretical result by no means rules out
specific reconfiguration to occur in the network. On the con-
trary, when we visualized spatial maps of correlation [after
subtraction of the stereotyped pattern due only to distance,
Fig. 3(c)], we observed clear sensory-evoked modifications of
the spatial patterns of correlation, with respect to those observed
during ongoing activity [Figs. 3(d)–3(e)]. This suggests that
more complex changes in spatiotemporal dynamics occur
upon sensory input than a simple global activity decrease.
This also reconciles our results with previous findings that spon-
taneous activity is spatially structured.7 Spontaneous activity
could thus be thought of, at the first order, as global slow-
wave activity, and at higher orders as endowed with finer struc-
tures riding on top of it, probably involving specific neuronal
connections.

Detailed insight on noise dynamics and beyond has recently
been provided within a Bayesian framework by the modeling
work of Ref. 16 for neuronal processing in primary visual cor-
tex, lacking, however, experimental testing on certain aspects.
Our data could provide those. Notably, our data appear to con-
firm the predicted within-trial variability reduction a result of
sensory input, thus lending support to their model predictions.
Another aspect where our data would seem to join16 are the
differences in spatial correlation patterns we observed between
blank and stimulated conditions, which would go along with the
change in interneuronal covariance predicted by the model. With
this respect, it would be interesting to investigate those predic-
tions in further detail for larger neuronal populations and more
contrast values than the published ones,16 for the purpose of
a more complete compatibility test with our data.

4.3 Two Different Contrast Dynamics

Our second main finding is that the activity changes reported
above are already near-maximal at the lowest contrasts used
in our experiments, displaying a dependence on contrast that
is remarkably different from those of the responses themselves,
which are barely visible at the lowest contrast [Figs. 5(c)–
5(g)]. In other words, cortical activity variables appear to
separate into two groups, characterized by different contrast
dynamics: the raw responses, characterized by a fast onset and
a gradual increase with stimulus contrast, as opposed to a second
group of variables, characterized by a nonlinear contrast dynam-
ics that becomes more pronounced during the plateau period of
the response (or at least is more separable from the first one
during this later response phase). It is tempting to speculate that
this delay might be the signature of more complex changes in
the spatiotemporal dynamics of local neural activity, beyond
the mere feed-forward flow of information. However, such a

bimodal distribution of variables characterizing cortical
dynamics does not necessarily imply the existence of two dis-
tinct pathways or mechanisms in the processing of sensory
information. Indeed, such behavior can be predicted by existing
models of neural networks, with abrupt changes as a result of
even a minimal input, e.g., due to mechanisms such as
bifurcation crossing,30 by switching from multimodal stability
(“ghost” attractors) a unimodal stability31 or by overall activity
decrease.32 The contrast dependence of cortical dynamics seen
in our data could thus serve as a benchmark for these existing
models, in particular for the recent Bayesian model by Ref. 16
that includes a systematical analysis of both first- and second-
order cortical activity statistics, of the signal itself as well as
of the “noise” (i.e., variability). Unfortunately, in that study,
only three contrast values were treated, making it difficult to
discern whether the contrast dependence of the activity variables
reported in that study (variability of population responses and
stimulus-specific distance between means, covariance between
cells, etc.) is abrupt or rather near-linear.

4.4 Implications for the Role of Spontaneous
Activity

Our experiments were not explicitly designed with the goal of
determining the functional role of spontaneous activity or of its
relation with sensory-evoked activity. Neither do our results
allow to answer the question of whether the source of response
variability (i.e., ongoing activity) has a function for the treat-
ment of sensory information or whether it should rather be
considered as a nuisance for sensory processing (instead of
an advantage), calling for the need to be temporarily silenced
not to hamper the latter. Nevertheless, as outlined below, our
findings have implications for both scenarios.

Shortly, the notion that the spontaneous activity may actively
participate to sensory processing was triggered among else by
the pioneering works of Grinvald and colleagues that empha-
sized its influence on evoked responses2 and its map-like spatial
structure.7 A Bayesian formulation of perception was proposed
shortly afterward,6,33–35 which, coupled with the postulate that
spontaneous activity encodes some a priori knowledge within
the functional structure of the underlying network, offers an
interesting unifying view accounting for the bidirectional
interactions between spontaneous and sensory-evoked activities
mentioned above (see also the review by Ferezou and Deneux in
this special issue of Neurophotonics). According to this formu-
lation, evoked activity represents an a posteriori knowledge of
the visual scene, i.e., a combination of the a priori knowledge
encoded in the spontaneous activity with the new information
provided by the sensory input. As a consequence, evoked
responses are determined not only by the sensory inflow itself
but also by the ongoing spontaneous activity that encodes a pri-
ori knowledge, and the decrease of the responses’ variability
compared with that observed in the spontaneous regime is inter-
preted as a reduction of perceptual uncertainty.

In this respect, the presence of two different contrast dynam-
ics in our data raises the following question: does the fact that
some of the changes in the measured cortical dynamics are near-
saturated already at the lowest contrasts [Figs. 5(c)–5(g)] sug-
gest that the perceptual uncertainty is already resolved, despite
sensory inflow being only minimal? Put differently, does the
transition in network activity as detected in VSD imaging at
low contrast values correspond to a transition in perception?
This hypothesis could be tested by behaviorally determining
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the monkey’s contrast threshold for perceptive processing of the
stimulus (preferably simultaneously with imaging), and then
testing it for similarity with the contrast threshold we found
with respect to a change in cortical dynamics. In case of a pos-
itive outcome, it will be necessary to model in a biologically
plausible way how and what kind of a priori information on
its environment the brain encodes in the slow and global activity
patterns we found to be characteristic—at least at the first
order—of ongoing activity, and which decrease as a result of
sensory input.

An alternative view on the function of spontaneous activity is
that it performs some background, low-level “maintenance” task
(see Ref. 36 for a short review). Should this be the case, our
results would indicate the existence of a switching mechanism
that shuts down (or reduces at least) this background activity
during the processing of incoming sensory information. This
hypothesis was already raised in Ref. 19, which observed a
decrease of up and down fluctuations in anesthetized rat barrel
cortex, lasting for several seconds after a brief somatosensory
stimulation. Importantly, such a switching mechanism would
not need to be explicitly formulated in a model of cortical activ-
ity. Rather, it could be embedded within an intrinsic mechanism
that decreases overall variability—thus also our “noise sig-
nal”—upon the entrance of a new sensory input. With this
respect, theoretical work32 has shown that—under certain
conditions—sensory input can reduce variability in recurrent
networks.32 Once more, however, experimental data11 show
that such a reduction of ongoing activity is compatible with
both interpretations of ongoing activity, underscoring the need
for additional experimental work to resolve this issue.

Appendix A: Relation Between “Temporal
Variability” and Classical Intertrial Variability,
Noise Correlations
Let us note ax;t;k the optical signal recorded in pixel x, at time t,
during the trial k. We first convert these raw data into what we
call “noise signal,” i.e., the fluctuations of the signal with respect
to the mean over trials, normalized by the latter

EQ-TARGET;temp:intralink-;x1;63;313bx;t;k ¼ ðax;t;k − hax;t;kikÞ∕hax;t;kik:

Our “temporal variability” is then computed as the noise
signal’s RMS, averaged over trials and pixels, i.e.,

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðbx;t;k − hbx;t;kitÞ2it

q
i
k;x

and is a scalar.

Classical, customary “intertrial variability” is computed as

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2x;t;kik

q
i
x
and is a function of t (although it can obviously

be averaged over time).
In the general case, one cannot predict one value from the

other, but if

1. the activity is assumed to be stationary over a particu-
lar time segment (e.g., a segment of spontaneous activ-
ity or the plateau period of the response), i.e., for every
time t in this segment and for every trial k, ax;t;k fol-
lows the same law with mean ā and variance σ2, and

2. this time window is significantly longer than the
typical correlation distance between different time
instants, such that hbx;t;kit is close to zero, and the

expectation of hðbx;t;k − hbx;t;kitÞ2it is close to
ðσ∕āÞ2, then both computations converge to the
same result σ∕ā when the number of trials goes to
infinity.

Importantly, only our computation allows us to investigate
the variability’s power in specific frequency bands (and to
deal with the problem of the slow baseline fluctuations that
typically affect VSD imaging signals).

For the correlation, our correlations between two pixels
x ≠ x 0 are computed using time as the internal variable and
then averaged over all pixel pairs and trials:

EQ-TARGET;temp:intralink-;x1;326;623

*
hðbx;t;k − hbx;t;kitÞðbx 0;t;k − hbx 0;t;kitÞitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðbx;t;k − hbx;t;kitÞ2it
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðbx 0;t;k − hbx 0;t;kitÞ2it
q

+
k; x ≠ x 0:

Classical “noise correlations” are computed using trials as
the internal variable, and averaged over pixel pairs

EQ-TARGET;temp:intralink-;x1;326;515

*
hbx;t;kbx 0;t;kikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hb2x;t;kik
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hb2x 0;t;kik
q

+
x ≠ x 0;

they are a function of t, which again can be averaged over time.
As for above, if the process is stationary and the time window

is long enough, both computations converge to the same value.
And again, only our computation allows investigating correla-
tions in specific frequency bands.

Appendix B: The Observed Correlation
Decrease Can be Explained by a Decrease
in Correlated Activity Alone, Without any
Increase in Uncorrelated Activity
We report an important stimulus-induced decrease of the corre-
lation between “noise signals” (i.e., after normalization by the
average response) recorded from different cortical locations,
with respect to the correlation in the absence of stimulation.
Considering the signals as composed by a correlated and an
uncorrelated component, this effect could result from a decrease
of the correlated one, either alone—thus resulting in a compa-
ratively large reduction in signal amplitude (measured as std.)—
or together with an increase of the uncorrelated one, which
results in a smaller signal amplitude decrease. Below, we for-
mally address the question of whether the size of the amplitude
decrease in our data is large enough to be compatible with both
possibilities or if it allows only for the second one.

For this purpose, we shall calculate the minimal size of the
signal std. decrease needed to account for a given decrease in
correlation, without any concomitant increase in uncorrelated
activity. Let us consider two spontaneous signals y1 and y2
recorded at two different locations and express each of those
as a sum

EQ-TARGET;temp:intralink-;e001;326;92yi ¼ x0 þ xi; (1)
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where x0 is a signal common to y1 and y2, and x1 and x2 (and
obviously x0) are uncorrelated. For the sake of simplicity, we
assume here that the scaling of x0 is the same in both y1 and
y2, and also that x1 and x2 have the same norm (i.e., std.),
and introduce the ratio s ¼ kx0k2∕kx1k2 ¼ kx0k2∕kx2k2,
which expresses how much the common signal contributes to
the total signal.

We also consider a second set of evoked “noise signals” y 0
1

and y 0
2, where the contribution of the common signal has been

reduced by a factor α < 1, but the norm of the uncorrelated
signals is unchanged

EQ-TARGET;temp:intralink-;e002;63;631y 0
i ¼ αx 0

0 þ x 0
i ; (2)

with kx 0
0k ¼ kx0k and kx 0

ik ¼ kxik.
Below, we will compute the correlation decrease c 0

c
corrðy 0

1
;y 0

2
Þ

corrðy1;y2Þ,
as a function of α, the original correlation c ¼ corrðy1; y2Þ and
of the decrease in std. r ¼ ky 0

i k
kyik.

The correlation values are

EQ-TARGET;temp:intralink-;e003;63;534c ¼ hy1:y2i
ky1k:ky2k

¼ kx0k2
kx0k2 þ kxik2

¼ s2

s2 þ 1
; (3)

and

EQ-TARGET;temp:intralink-;e004;63;477c 0 ¼ α2s2

α2s2 þ 1
: (4)

From Eq. (3), we can express s2 as a function of c

EQ-TARGET;temp:intralink-;e005;63;428s2 ¼ c
1 − c

: (5)

The square of the total signal decrease r is

EQ-TARGET;temp:intralink-;e006;63;378r2 ¼ ky 0
ik2

kyik2
¼ α2kx0k2 þ kxik2

kx0k2 þ kxik2
¼ α2s2 þ 1

s2 þ 1
; (6)

from which we can express α as a function of r and s

EQ-TARGET;temp:intralink-;e007;63;321α2 ¼ r2s2 þ r2 − 1

s2
: (7)

Finally, we have:
c 0
c ¼ α2

r2 , and using Eqs. (5) and (7),

EQ-TARGET;temp:intralink-;e008;63;256

c 0

c
¼ 1 −

1 − c
c

�
1

r2
− 1

�
: (8)

If the decrease is small, r is close to 1, approximating at the
first order: 1

r2 − 1 ∼ 2ð1 − rÞ, then allows rewriting Eq. (8) as

EQ-TARGET;temp:intralink-;e009;63;189

c 0 − c
c

∼ 2
1 − c
c

ðr − 1Þ ¼ 2
1 − c
c

ky 0
ik − kyik
kyik

: (9)

For a correlation between spontaneous signals c around 0.2
as in our data, the factor 2 1−c

c relating signal std. decrease and
correlation decrease is as high as 8.

As mentioned in the main text, our correlation decrease does

not exceed the one predicted by Eq. (8): ky 0
i k−kyik
kyik is on average

equal to −6.9% and c to 0.194. If these changes were solely due
to the decrease of a common (i.e., fully correlated) signal, one

would observe a correlation decrease c 0−c
c of −63.9%! This is

clearly more than the average correlation drop of −37.4%
observed in our data, which can, therefore, be explained by a
simple decrease in correlated activity, without the need of invok-
ing an increase in uncorrelated activity (although not ruling it
out). It is also possible that a part of the uncorrelated component
decreases as well, but necessarily to a much lesser extent than
the correlated component (otherwise, the correlation between
signals from different locations would simply remain constant).
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