
June 1, 2020 10:42 2050027

International Journal of Neural Systems, Vol. 30, No. 6 (2020) 2050027 (16 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129065720500276

Temporal Backpropagation for Spiking Neural Networks
with One Spike per Neuron

Saeed Reza Kheradpisheh∗

Department of Computer and Data Sciences, Faculty of Mathematical Sciences
Shahid Beheshti University, Tehran, Iran

s kheradpisheh@sbu.ac.ir

Timothée Masquelier
CERCO UMR 5549, CNRS – Université Toulouse 3, Toulouse, France

timothee.masquelier@cnrs.fr

Accepted 8 March 2020
Published Online 28 May 2020

We propose a new supervised learning rule for multilayer spiking neural networks (SNNs) that use a
form of temporal coding known as rank-order-coding. With this coding scheme, all neurons fire exactly
one spike per stimulus, but the firing order carries information. In particular, in the readout layer,
the first neuron to fire determines the class of the stimulus. We derive a new learning rule for this
sort of network, named S4NN, akin to traditional error backpropagation, yet based on latencies. We
show how approximated error gradients can be computed backward in a feedforward network with
any number of layers. This approach reaches state-of-the-art performance with supervised multi-fully
connected layer SNNs: test accuracy of 97.4% for the MNIST dataset, and 99.2% for the Caltech
Face/Motorbike dataset. Yet, the neuron model that we use, nonleaky integrate-and-fire, is much simpler
than the one used in all previous works. The source codes of the proposed S4NN are publicly available
at https://github.com/SRKH/S4NN.

Keywords: Spiking neural network; supervised learning; temporal backpropagation; single spike coding.

1. Introduction

Biological neurons communicate via short stereo-
typed electrical impulses called “spikes”, or “action
potentials”. Each neuron integrates incoming spikes
from the presynaptic neurons and whenever its mem-
brane potential reaches a certain threshold, it also
sends an outgoing spike to the downstream neurons.
In the brain, the spike times, in addition to the spike
rates, are known to play an important role in how
neurons process information.1,2 Spiking neural net-
works (SNNs) are thus more biologically realistic
than the artificial neural networks (ANNs),3–6 and
as SNNs use sparse and asynchronous binary sig-
nals processed in a massively parallel fashion, they
are one of the best available options to study how
the brain computes at the neuronal description level.

But SNNs are also appealing for artificial intelligence
technology, especially for edge computing, since their
implementations on the so-called neuromorphic chips
can be far less energy–hungry than ANN implemen-
tations (typically done on GPUs or similar hard-
ware), mostly because they can leverage efficient
event-based computations.4,7–12

Recently, an extensive effort has been made by
numerous researchers to develop direct supervised
learning algorithms for SNNs.7 The main challenge
for this is the nondifferentiability of the threshold-
ing activation function of spiking neurons at firing
times. One solution to this problem is to consider
spike rates instead of exact firing times.13–15 The sec-
ond approach is to use smoothed spike functions that
are differentiable with respect to time.16 The third

∗Corresponding author.

2050027-1

https://dx.doi.org/10.1142/S0129065720500276

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

set of methods use surrogate gradients at the firing
times.8,17–22 The last approach, known as latency
learning, is the main focus of this paper. In this
approach, the firing time of the neuron is defined
as a function of its membrane potential or the firing
time of presynaptic neurons.23–25 In this way, the
derivation of the thresholding activation function is
no longer required.

More specifically, our goal is to classify static
inputs (e.g. images), with an SNN in which neu-
rons fire once at most, but the most strongly acti-
vated neurons fire first.24–36 Thus, the spike laten-
cies, or firing order, carry information. Here, we used
simple nonleaky integrate-and-fire neurons37 in all
the layers of the proposed SNN. Indeed, each neu-
ron simply integrates weighted input spikes (received
from instantaneous synapses) through time with no
leak and emits only one spike right after crossing
its threshold for the first time, or zero spike if this
threshold is never reached. In the readout layer, there
is one neuron per category. As soon as one of these
neurons fires, the network assigns the correspond-
ing category to the input, and the computations can
stop when only a few neurons have fired. This coding
scheme is thus extremely economical in the number
of spikes.

In this work, we adapted the well-known back-
propagation algorithm,38 originally designed for
ANNs, to this sort of SNNs. Backpropagation has

Fig. 1. An S4NN with two hidden layers. The input layer converts the input data into a spike train (using the temporal
time-to-first-spike coding) and sends it to the next layer. Spikes are propagated through the network and reach the output
layer. The output layer computes the errors with respect to the target firing times, and then, synaptic weights are updated
using the temporal error backpropagation.

been shown to solve extremely difficult classifica-
tion problems in ANNs with many layers, leading to
the so-called “deep learning” revolution.39 The tour
de force of backpropagation is to solve the multi-
layer credit assignment problem.40 That is, it finds
what the hidden layers should do to minimize the
loss in the readout layer. This motivated us, and
others,23–25,34 to adapt backpropagation to single-
spike SNNs, by using the latencies instead of the fir-
ing rates. The main strength of our approach with
respect to the above-mentioned ones is the use of a
much simpler neuron model: A nonleaky integrate-
and-fire neuron with instantaneous synapses. Yet,
it reaches a comparable accuracy on the MNIST
dataset.41

2. Methods

The proposed single-spike supervised spiking neu-
ral network (S4NN) is comprised of an input layer
converting input data into a spike train and feeding it
into the network, followed by one or more hidden lay-
ers of nonleaky integrate-and-fire (IF) neurons pro-
cessing the input spikes, and finally, an output layer
of nonleaky IF neurons with one neuron per category.
Figure 1 demonstrates an S4NN with two hidden lay-
ers. Here, we use a temporal (i.e. rank-order) coding
called time-to-first-spike in the input layer which is
very sparse and produces at most one spike for each

2050027-2

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

input value. The subsequent neurons are also limited
to fire exactly once.

To train the network, a temporal version of the
backpropagation algorithm is used. We assume an
image categorization task with several images per
category. First, the network decision on the category
of the input image is made by considering the first
output neuron to fire. Then, the error of each output
neuron is computed by comparing its actual firing
time with a target firing time (see Sec. 2.5). Finally,
these errors are backpropagated through the layers
and weights get updated through stochastic gradi-
ent descent. Meanwhile, the temporal backpropaga-
tion confronts two challenges: defining the target fir-
ing time and computing the derivative of the neuron
firing time with respect to its membrane potential.
To overcome these challenges, the proposed learn-
ing algorithm uses relative target firing times and
approximated derivations.

2.1. Time-to-first-spike coding

The first step of an SNN is to convert the ana-
log input signal into a spike train representing the
same information. The neural processing in the fol-
lowing neurons should be compatible with this cod-
ing scheme to be able to decipher the information
encoded in the input spikes. Here, we use a time-
to-first-spike coding for the entry layer (in which a
larger input value corresponds to an earlier spike)
and IF neurons in subsequent layers that fire once.

Consider a gray image with the pixel intensity
values in range [0, Imax], each input neuron encodes
its corresponding pixel value in a single spike time in
range [0, tmax]. The firing time of the ith input neu-
ron, ti, is computed based on the ith pixel intensity
value, Ii, as follows:

ti =
⌊

Imax − Ii

Imax
tmax

⌋
. (1)

Therefore, the spike train of the ith neuron in the
input layer (layer zero) is defined as

S0
i (t) =

{
1, if t = ti,

0, otherwise.
(2)

Notably, this simple intensity-to-latency code
does not need any preprocessing steps like apply-
ing Gabor or DoG filters that are commonly used in
SNNs, especially, in those with STDP learning rule

which can not handle homogeneous surfaces.30,31,42

Also, it produces only one spike per pixel and hence
the obtained spike train is way sparser than what is
common in rate codes.

Neurons at the subsequent layers fire as soon as
they reach their threshold, and the first neuron to fire
in the output layer determines the network decision.
Hence, the network decision depends on the earli-
est spikes throughout the network. In other words,
neural information in all the layers is encoded in the
spike times of the earliest neurons to fire. Therefore,
one can say that the time-to-first-spike information
coding is at work in subsequent layers as well.

2.2. Forward path

S4NN consists of multiple layers of nonleaky IF neu-
rons and there is no limitation on the number of the
layers, hence, one can implement S4NN with any
arbitrary number of hidden layers. The membrane
potential of the jth neuron in the lth layer at time
point t, V l

j (t), is computed as

V l
j (t) =

∑
i

wl
ji

t∑
τ=1

Sl−1
i (τ), (3)

where Sl−1
i and wl

ji are, respectively, the input spike
train and the input synaptic weight from the ith
presynaptic neuron in the previous layer to neuron j.
The IF neuron emits a spike the first time its mem-
brane potential reaches the threshold, θl

j ,

Sl
j(t) =

{
1 if V l

j (t) ≥ θl
j & Sl

j(< t) �= 1,

0 otherwise,
(4)

where Sl
j(< t) �= 1 checks if the neuron has not fired

at any previous time step.
As explained in the previous section, the input

image is transformed into a spike train, S0(t), in
which each input neuron will emit a spike with
a delay, in the range [0, tmax], negatively propor-
tional to the corresponding pixel value. These spikes
are propagated toward the first layer of the net-
work, where each neuron receives incoming spikes
and updates its membrane potential until it reaches
its threshold and sends a spike to the neurons in
the next layer. For each input image, the simulation
starts by resetting all the membrane voltages to zero
and continues for tmax time steps. Note that during

2050027-3

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

a simulation, each neuron at any layer is allowed to
fire once at most. In the training phase, we need to
know the firing time of all neurons (see Eqs. (15)
and (9)), hence if a neuron was silent, we assume
that it fires a fake spike at the last time step, tmax.
During the test phase, neurons can be silent or fire
once at most. Finally, regarding the time-to-first-
spike coding deployed in our network, the output
neuron which fires earlier than others determines the
category of the input stimuli.

2.3. IF approximating ReLU

In traditional ANNs with Rectified Linear Units
(ReLU)43 activation function, the output of a neuron
in layer l with index j is computed as

yl
j = max

(
0, zl

j =
∑

i

wl
jix

l−1
i

)
, (5)

where xl−1
i (xl−1

i > 0) and wl
ji are the ith input

and connection weight, respectively. Thus, the ReLU
neuron with a larger zl

j has a larger output value,
yl

j. Generally, the main portion of this integration
value is due to the large inputs with large connec-
tion weights. In our time-to-first-spike coding, larger
values correspond to earlier spikes, and hence, if an
IF neuron receives these early spikes through strong
synaptic weights, it will also fire earlier. Note, as the
network decision is based on the first spike in the
output layer, thus earlier spikes carry more infor-
mation. In this way, the time-to-first-spike coding is
preserved in the hidden and output layers. There-
fore, for the same inputs and synaptic weights, we
can assume an equivalence relation between the out-
put of the ReLU neuron, yl

j , and the firing time of
the corresponding IF neuron, tlj ,

yl
j ∼ tmax − tlj , (6)

and we know that

∂yl
j

∂wl
ji

=
∂yl

j

∂zl
j

∂zl
j

∂wl
ji

=

{
xl−1

i , if yl
j > 0,

0, otherwise,
(7)

where ∂yl
j/∂zl

j = 1 if yl
j > 0.

Regarding the fact that in the IF neuron, tlj is
not a function of wl

ji, we cannot compute ∂tlj/∂wl
ji.

Therefore, according to Eq. (6), we assume that
∂tlj/∂V l

j = −1 if tlj < tmax (see Eq. (7)). Note
that according to Eq. (3), we have ∂V l

j /∂wl
ji =

∑tl
j

τ=1 Sl−1
i (τ). Thus, we have

∂tlj
∂wl

ji

=
∂tlj
∂V l

j

∂V l
j

∂wl
ji

=

⎧⎪⎪⎨
⎪⎪⎩
−

tl
j∑

τ=1

Sl−1
i (τ), if tlj < tmax,

0 otherwise,

(8)

where
∑tl

j

τ=1 Sl−1
i (τ) = 1 if tl−1

i ≤ tlj .

2.4. Backward path

We assume that in a categorization task with C cat-
egories, each output neuron is assigned to a differ-
ent category. After completing the forward path over
the input pattern, each output neuron may fire at a
different time point. As mentioned before, the cate-
gory of an input image is predicted as the category
assigned to the winner output neuron (the output
neuron which has fired earlier than others).

Hence, to be able to train the network, we define
a temporal error function as

e = [e1, . . . , eC] s.t. ej = (T o
j − toj)/tmax, (9)

where T o
j and toj are the target and actual firing times

of the jth output neuron, respectively. The target
firing times should be defined in a way that the cor-
rect neuron fires earlier than others. We use a rela-
tive target firing calculation that is fully explained
in Sec. 2.5. Here, we assume that T o

j is known.
During the learning phase, we use the stochastic

gradient descent38 (SGD)and backpropagation algo-
rithms to minimize the “squared error” loss function.
For each training sample, the loss is defined as

L =
1
2
‖e‖2 =

1
2

C∑
j=1

e2
j , (10)

and, hence, we need to compute its gradient with
respect to each synaptic weight. To update wl

ji, the
synaptic weight between the ith neuron of layer l−1
and the jth neuron of layer l, we have

wl
ji = wl

ji − η
∂L

∂wl
ji

, (11)

where η is the learning rate parameter.

2050027-4

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

Let’s define

δl
j =

∂L

∂tlj
, (12)

therefore, by considering Eqs. (8) and (12), we have

∂L

∂wl
ji

=
∂L

∂tlj

∂tlj
∂wl

ji

=

⎧⎪⎪⎨
⎪⎪⎩
−δl

j

tl
j∑

τ=1

Sl−1
i (τ) if tlj < tmax

0 otherwise,

(13)

where for the output layer (i.e. l = o) we have

δo
j =

∂L

∂ej

∂ej

∂toj
= −ej, (14)

and for the hidden layers (i.e. l �= o), according to
the backpropagation algorithm, we have

δl
j =

∑
k

∂L

∂tl+1
k

∂tl+1
k

∂V l+1
k

∂V l+1
k

∂tlj

=
∑

k

δl+1
k wl+1

kj [tlj ≤ tl+1
k],

(15)

where k iterates over neurons in layer l +1. Note that
regarding Eq. (12) we have ∂L/∂tl+1

k = δl+1
k , and as

explained in Sec. 2.3 we approximate ∂tl+1
k /∂V l+1

k =
−1. To compute ∂V l+1

k /∂tlj we should note that
reducing tlj will increase V l+1

k by wl+1
kj earlier in time,

hence we approximate ∂V l+1
k /∂tlj = −wl+1

kj if and
only if [tlj ≤ tl+1

k].
To avoid the exploding and vanishing gradient

problems during backpropagation, we use normal-
ized gradients. Literally, at any layer l, we normal-
ize the backpropagated gradients before updating the
weights

δl
j ←

δl
j∑

i

δl
i

. (16)

To avoid over-fitting, we added an L2-norm regu-
larization term λ

∑
l

∑
i,j(w

l
ji)

2 (over all the synaptic
weights in all the layers) to the “squared error” loss
function in Eq. (10). The parameter λ is the regular-
ization parameter accounting for the degree of weigh
penalization.

2.5. Relative target firing time

As the proposed network works in the temporal
domain, for each input image, we need to define the

target firing time of the output neurons regarding its
category label.

One possible scenario is to define a fixed and pre-
defined vector of target firing times for each cate-
gory, in a way that the correct neuron has a shorter
target firing time than others. For instance, if the
input image belongs to the ith category, then, one
can define T o

i = τ and T o
j = tmax for j �= i, where

0 < τ < tmax is the desired firing time for the win-
ner neuron. In this way, the correct output neuron is
encouraged to fire early at time τ , while others are
forced to block firing until the end of the simulation.

Such strict approaches have several drawbacks.
For instance, let’s assume an input image belonging
to the ith category with toi < τ , in this way, the cor-
rect neuron has a negative error (see Eq. (9)). The
backward path will update the weights to make this
neuron fire later which means the network should
forget what has helped the correct neuron to fire
quickly. It is not desirable as we want the network to
respond as quickly as possible.

The other scenario is to use a dynamic method
to determine the target firing times for each input
image, independently. Here, we propose a relative
method that takes the actual firing times into
account. Let’s assume an input image of the ith cat-
egory is fed to the network and the firing time of the
output neurons are obtained. First, we compute the
minimum output firing time as τ = min{toj |1 < j <

C} and then we set the target firing time of the jth
output neuron as

T o
j =

⎧⎪⎨
⎪⎩

τ if j = i,

τ + γ if j �= i & toj < τ + γ,

toj if j �= i & toj ≥ τ + γ,

(17)

where, γ is a positive constant term penalizing out-
put neurons with firing times close to τ . Other neu-
rons which have fired quite after τ are not penalized
and the correct output neuron is encouraged to fire
earlier than others at the minimum firing time, τ .

In a special case where all output neurons are
silent during the simulation and their firing time is
manually set to tmax, we compute the target firing
times as

T o
j =

{
tmax − γ if j = i,

tmax if j �= i,
(18)

to encourage the correct output neuron to fire during
the simulation.

2050027-5

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

Table 1. The structural, initialization, and model parameters used for the Caltech face/motorbike and MNIST
datasets.

Layer size Initial weights Model parameters

Dataset Input Hidden Output Hidden Output tmax θ η γ λ

Caltech face/motorbike 160 × 250 4 2 [0, 1] [0, 50] 256 100 0.1 3 10−6

MNIST 28 × 28 400 10 [0, 5] [0, 50] 256 100 0.2 3 10−6

2.6. Learning procedure

As mentioned before, the proposed network employs
a temporal version of SGD and backpropagation to
train the network. During a training epoch, images
are converted into input spike trains by the time-
to-first-spike coding (see Sec. 2.1) and fed to the
network one by one. Through the forward path,
each IF neuron at any layer receives incoming spikes
and emits a spike when it reaches its threshold (see
Sec. 2.2). Then, after computing the relative target
output firing times (encouraging correct output neu-
ron to fire earlier, see Sec. 2.5), we update the synap-
tic weights in all the layers using temporal error
backpropagation (see Sec. 2.4). Note that we force
neurons to fire a fake spike at the last time step if
they could not reach the threshold during the sim-
ulation (it is necessary for the learning rule). After
completing the forward and backward processes on
the current input image, the membrane potentials of
all the IF neurons are reset to zero and the network
gets ready to process the next input image. Notably,
each neuron is allowed to fire only once during the
processing of each input image.

As stated before, except for the fake spikes, IF
neurons fire if and only if they reach their threshold.
Let us consider an IF neuron that has decreased its
weights (during the weight update process) in a way
that it can not reach its threshold for any of the
training images. Now, it is a dead neuron and only
emits fake spikes. Hence, if a neuron dies, and does
not fire real spikes during a training epoch, we reuse
it by resetting its synaptic weights to a new set of
random values drawn from a uniform distribution in
the same range as the initial weights. Although it
happens rarely, it helps the network to use all its
learning capacity.

3. Results

We first use the Caltech 101 face/motorbike dataset
to better demonstrate the learning process in S4NN

and its capacity to work on large-scale and natural
images. Afterward, we evaluate S4NN on the MNIST
dataset which is one of the widely used benchmarks
in the area of spiking neural networks (SNNs)7 to
demonstrate its capability to handle large and multi-
class problems. The parameter settings of the S4NN
models used for the Caltech face/motorbike and
MNIST datasets are provided in Table 1.

3.1. Caltech face/motorbike dataset

We evaluated S4NN on the Caltech 101 face/
motorbike dataset available at http://www.vision.
caltech.edu. Some sample images are provided in
Fig. 2. We trained the network on 200 randomly
selected images per category. Also, we selected 50
random images from each category as the valida-
tion set. The remaining images were used in the test
phase. We grayscaled all images and rescaled them
to be of size 160× 250 pixels.

In the first experiment, we use a fully connected
architecture with a hidden layer of four IF neurons.
The input layer has the same size as the input images
(i.e. 160 × 250) and the firing time of each input
neuron is calculated by the time-to-first-spike coding
explained in Sec. 2.1. The output layer is comprised
of two output IF neurons (the face and the motorbike
neurons) corresponding to the image categories. We
set the maximum simulation time as tmax = 256 and
initialize the input-hidden and hidden-output synap-
tic weights with random values drawn from uniform
distributions in range [0, 1] and [0, 50], respectively.
We also set the learning rate as η = 0.1, the penalty
term in the target firing time calculation as γ = 3,
and the regularization parameter as λ = 10−6. The
threshold of all neurons in all layers, θl

i, is set to 100.
Figure 3 shows the trajectory of the mean sum-

of-squared-error (MSSE) for the training and valida-
tion samples through the training epochs. The sud-
den jumps in the early part of the MSSE curves are
mainly due to the enormous weight changes in the

2050027-6

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

Fig. 2. Some sample images from Caltech face/motorbike dataset.

Fig. 3. The mean and the standard deviation of the
sum-of-squared-error of the proposed S4NN over the
training and validation samples through the training
epochs. MSSE fluctuates at the beginning of the learning
but gets stable after 15 epochs and remains below 0.1.

first training epochs that may keep any of the output
neurons silent (emitting fake spikes only) for a while,
however, it is being resolved during the next epoch.
Finally, after some epochs, the network overcomes
this challenge and decreases the MSSE below 0.1.

The proposed S4NN could reach 99.75% ± 0.1%
recognition accuracy (i.e. the percentage of cor-
rectly classified samples) on training samples and
99.2% ± 0.2% recognition accuracy on testing sam-
ples which outperforms previously reported SNN
results on this dataset (see Table 2). In Masque-
lier et al.,28 a two-layer convolutional SNN trained
by unsupervised STDP followed by a supervised
potential-based radial basis functions (RBFs) clas-
sifier reached 99.2% accuracy on this dataset. This
network uses four Gabor filters and four scales in the
first layer and extracts ten different filters for the
second layer. Also, it does not make decisions by the
spike times, rather it uses neurons’ membrane poten-
tial to do the classification. In Kheradpisheh et al.
(2018),30 an STDP-based SNN with three convolu-
tional layers (respectively consisting of 4, 20, and 10
filters) and a SVM classifier could reach to 99.1%
accuracy on this dataset. This model has also used
the membrane potentials of neurons in the last layer
to do the classification. To do a spike-based classifi-
cation, authors in Mozafari et al.31 proposed a two-
layer convolutional network with four Gabor filters
in the first layer and 20 filters learned by reward-
modulated STDP in the second layer. Each of the 20

Table 2. The recognition accuracy of different SNN models on the Caltech
face/motorbike dataset along with their learning and classification methods. Note
that models with spike-based classification do not need an external classifier and
make their decision based on the spiking activity of their last layer.

Model Learning method Classifier Accuracy (%)

Masquelier et al.28 Unsupervised STDP RBF 99.2

Kheradpisheh et al.30 Unsupervised STDP SVM 99.1

Mozafari et al.31 Reward modulated STDP Spike-based 98.2
S4NN (This paper) Backpropagation Spike-based 99.2

2050027-7

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

(a) Before Training

(b) After Training

Fig. 4. The firing times of the face and motorbike output neurons over the face and motorbike images at (a) the beginning
and (b) the end of the learning phase. The left (right) plots show the firing times of both neurons over the face (motorbike)
images.

filters was assigned to a specific category and a deci-
sion was made by the first neuron to fire. It reached
98.2% accuracy on Caltech face/motorbike dataset.
The important feature of this network was the spike-
time-based decision-making achieved through rein-
forcement learning. The proposed S4NN also makes
decisions by the spike times and could reach 99.2%
accuracy only by using four hidden and two output
neurons.

As explained in Sec. 2.2, each output neuron is
assigned to a category and the network decision is
made based on the first output neuron to fire. Dur-
ing the learning phase, regarding the relative tar-
get firing time (see Sec. 2.5), the network adjusts its
weights to make the correct output neuron to fire
first (see Sec. 2.4). Figure 4 provides the firing time

of both face and motorbike output neurons (over the
training and validation images) at the beginning and
ending of the learning phase. As seen in Fig. 4(a),
at the beginning of the learning, the distributions of
the firing time of both output neurons (regardless of
the image category) are interleaved which leads to a
poor classification accuracy around the chance level.
But as the learning phase proceeds and the network
learns to solve the task, the correct output neuron
tends to fire earlier.

As shown in Fig. 4(b), at the end of the learn-
ing phase, for each image category, its corresponding
output neuron fires at the early time steps while the
other neuron fires long after. Note that, during the
training phase, we force neurons to emit a fake spike
at the last time step if they have not fired during

2050027-8

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

Fig. 5. The histogram of the firing time of the win-
ner neuron (regardless of its category) over the training
images. The red dashed line shows the mean firing time
of the winner neuron.

the simulation. Hence, in the test phase, we do not
need to continue the simulation after the emission
of the first spike in the output layer. Figure 5 shows
the distributions of the firing time of the winner neu-
rons. The mean firing time for winner neuron is 27.4
(shown by the red line) wherein 78% of the images,
the winner neuron has fired within the first 40 time
steps. It means that the network makes its decision
very quickly (compared to the maximum possible
simulation time, tmax = 256) and accurately (with
only 0.8% error rate).

As the employed network has only one hidden
layer of fully connected neurons, we can simply
reconstruct the pattern learned by each hidden neu-
ron by plotting its synaptic weights. Figure 6 depicts
the synaptic weights of the four hidden neurons at
the end of the learning phase. As seen, neurons #2 to
#4 became selective to different shapes of motorbikes
covering the shape variety of motorbikes. Neuron #1

(a) Neuron #1 (b) Neuron #2 (c) Neuron #3 (d) Neuron #4

Fig. 6. The pattern (input-hidden weight matrix) learned by each of the four hidden neurons. The first neuron responds
to face images while the other three are selective to the motorbikes variants.

has learned a combination of faces appearing at
different locations and consequently responds only to
face images. Because of the competition held between
the output neurons to fire first, hidden and output
neurons should learn and rely on the early spikes
received from the input layer (not all of them). And
this is the reason why the learned features in the hid-
den layer are not visually well detectable. The distri-
bution of synaptic weights for each of the four hid-
den neurons are plotted in Fig. 7. As seen, the initial
uniform distribution of the weights is transformed
into the normal distribution with the zero mean.
Here, positive weights encourage neurons to fire for
their learned patterns and negative weights prevent
them from firing for other patterns. Negative weights
help the network to decrease the chance of unwanted
spikes. For instance, a negative synaptic weight from
a motorbike selective hidden neuron to the face out-
put neuron significantly decreases the chance of an
unwanted spike by the face neuron.

Furthermore, we evaluated the robustness of the
trained S4NN to jitter noise. To this end, during the
test phase, we add random integers drawn from a
uniform distribution in range [−J, J] to the pixels
of the input images. We changed the jitter parame-
ter, J, from 0 to 240 with a step size of 20. Figure 8
shows the recognition accuracy of the S4NN trained
on face/motorbike dataset over the test samples
contaminated by different levels of jitter. Interest-
ingly, even for J = 240, the S4NN accuracy drops
by at most 5%. It shows that S4NN is robust to
even intense noise levels. Indeed, neurons in the hid-
den layer has strong (positive or negative) synaptic
weights only to those input neurons that contribute
in the face/motorbike categorization task (see Fig. 6)
while the rest majority of inputs have very small
synaptic weights (see Fig. 7) and do not contribute
much in the neural processing. Hence, because the

2050027-9

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

(a) Neuron #1 (b) Neuron #2 (c) Neuron #3 (d) Neuron #4

Fig. 7. The histogram of the input-hidden synaptic weighs for each of the four hidden neurons.

jitter noise just changes the order of spikes, it can
not much affect the behavior of IF neurons. Note
that IF neurons are perfect integrators without leak
and are less sensitive to the order of inputs than leaky
neurons.

To assess the capacity of the proposed tempo-
ral backpropagation algorithm to be used in deeper
architectures, we did another experiment on Caltech
face/motorbike dataset with a three-layer network.
The deep network is comprised of two hidden layers
each of which consists of four IF neurons followed by
an output layer with two IF neurons. We initialized
the input-hidden1, hidden1-hidden2, and hidden2-
output weights with random values drawn from uni-
form distributions in range [0, 1], [0, 50], and [0, 50],
respectively. Other parameters are the same as the
aforementioned network with one hidden layer. After
25 training epochs, the network reached 99.1±0.2%
accuracy on testing images with the mean firing time
of 32.1 for the winner neuron. Although the accuracy
of the network is 0.1% higher than the deeper net-
work on average, this difference is not statistically
significant (paired t-test on the accuracies of 10 dif-
ferent runs for each network; p-value < 0.05).

3.2. MNIST dataset

MNIST41 is a benchmark dataset that has been
widely used in the SNN literature.7 We also eval-
uated the proposed S4NN on the MNIST dataset
which contains 60,000 training and 10,000 test hand-
written single-digit images. Each image is of size
28 × 28 pixels and contains one of the digits 0–9.
To this end, we used a S4NN with one hidden and
one output layer containing 400 and 10 IF neurons,
respectively. The input layer is of the same size as the
input images where the firing time of each input neu-
ron is determined by the time-to-first-spike coding

Fig. 8. The recognition accuracy of S4NN trained on
the normal face/motorbike images and evaluated on test
images contaminated by different amounts of jitter noise.

explained in Sec. 2.1 with the maximum simulation
time of tmax = 256. The input-hidden and hidden-
output layers’ synaptic weights are randomly drawn
from uniform distributions in ranges [0, 5] and [0, 50],
respectively. The threshold for all the neurons in all
the layers was set to θl

i = 100. We set the learning
rate as η = 0.2, the penalty term in the target fir-
ing time calculation as γ = 3, and the regularization
parameter as λ = 10−6.

Table 3 provides the categorization accuracies of
the proposed S4NN (97.4±0.2%) and other recent
SNNs with spike-time-based supervised learning
rules on the MNIST dataset. In Mostafa,24 the use
of 800 IF neurons with alpha functions complicates
the neural processing and the learning procedure of
the network. In Tavanaei et al.,44 the network com-
putational cost is quite large due to the use of rate
coding and 1000 hidden neurons. In Comsa et al.,25

the use of complicated SRM neuron model with

2050027-10

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

Table 3. The recognition accuracies of recent supervised SNNs with time-based backpropagation on the MNIST dataset.
The details of each model including its input coding scheme, neuron model, learning method, and the number of hidden
neurons are provided.

Model Coding Neuron model Learning method Hidden neurons Acc. (%)

Mostafa24 Temporal IF (exponential synaptic
current)

Temporal
backpropagation

800 97.2

Tavanaei et al.44 Rate IF (instantaneous synaptic
current)

STDP-based
backpropagation

1000 96.6

Comsa et al.25 Temporal SRM (exponential
synaptic current)

Temporal
backpropagation

340 97.4

ANN — ReLU Backpropagation with
Adam

400 98.1

S4NN (This paper) Temporal IF (instantaneous synaptic
current)

Temporal
backpropagation

400 97.4

Table 4. The mean firing time-step of the correct output neuron along with the mean required number of spikes (in all
the layers) until the emission of the first spike at the output layer, for each digit category.

Digit ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

Mean firing time-step 97.2 44.1 75.3 98.1 118.5 81.2 90.9 100.1 115.6 75.6
±40.0 ±24.4 ±33.9 ±40.3 ±34.7 ±38.4 ±36.7 ±36.2 ±36.9 ±34.1

Mean required spikes 221.0 172.6 226.4 220.5 233.2 220.7 224.0 224.6 233.6 213.4
±42.8 ±43.2 ±42.7 ±41.5 ±40.5 ±43.3 ±42.7 ±43.0 ±40.6 ±43.6

the exponential synaptic current makes it difficult
for event-based implementation. Comsa et al. imple-
mented their model in two versions, where their fast
model, similar to ours, decides by the first spike
at the output layer and reached 97.4% accuracy on
MNIST. While the slow version of their model needs
to wait for all the hidden neurons to fire before mak-
ing its decision. The slow version could reach 97.9%
accuracy on MNIST. The advantage of S4NN is the
use of simple neuron model (IF with an instanta-
neous synaptic current), temporal coding with at
most one spike per neuron, and simple supervised
temporal learning rule. Also, we used only 400 neu-
rons in the hidden layer which makes it lighter than
other networks.

We have also implemented a three-layer ANN
(input-hidden-output) with 400 hidden units. We
used the ReLU activation function for both hidden
and output layers and employed mean squared error
(MSE) as the loss function. We trained the network
with Adam optimizer and reached 98.1% accuracy
on MNIST. Although the ANN outperforms all the
SNN models in Table 3, the advantage of SNNs is
their energy efficiency and hardware friendliness.

Fig. 9. The mean firing time of each output neu-
ron (rows) over the images of different digit categories
(columns).

Figure 9 shows the mean firing time of each out-
put neuron on images of different digit categories.
As seen, for each digit category, there is a huge gap
between the mean firing time of the correct output

2050027-11

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

Fig. 10. The speed-accuracy trade-off. The network is
pre-trained by the threshold of 100 for all hidden and out-
put neurons, then the model is evaluated on test set with
the threhold of 10 to 150. For each threshold value, the
accuracy and the mean firing time of the winner ouput
nueron is computed.

neuron and others. Digits ‘1’ and ‘4’ with the fir-
ing times of 44.1 and 118.5 have the minimum and
maximum mean firing times, respectively. Hypothet-
ically, recognition of digit ‘1’ relies on much fewer
spikes than other digits and would have a much faster
response. While digit ‘4’ (or digit ‘8’ with the mean
firing time of 101.5) needs much more input spikes
to be correctly recognized from other (and similar)
digits. Interestingly, on average, the network needs
172.69 spikes to recognize digit ‘1’ and 233.22 spikes
for digit ‘4’. Table 4 presents the mean firing time
of the correct output neurons along with the mean
required number of spikes. Note that the required
spikes are obtained by counting the number of spikes
in all the three layers (input, hidden, and output)
until the emission of the first spike at the output
layer.

On average, the proposed S4NN makes its deci-
sions with 97.4% precision in 89.7 time steps (35.17%
of maximum simulation time) with only 218.3 spikes
(18.22% of 784+400+10 possible spikes). Note that,
on average, hidden neurons emit 132.2±6.7 until
the network makes its decision. Therefore, the pro-
posed network works in a fast, accurate, and sparse
manner.

In a further experiment, we assessed the speed-
accuracy trade-off in S4NN. To do so, we first trained
S4NN (with the threshold 100 for all neurons) on
MNIST and frizzed its weights, then we changed the

threshold of all of its hidden and output neurons from
10 to 150 and evaluated it on the test set. Figure 10
shows the accuracy and the mean firing time of the
winner output neurons (i.e. response-time) over dif-
ferent threshold values. As seen, by increasing the
threshold, the accuracy increases, goes above 94%
after threshold 70, and peaks at the threshold 100.
Also, it can be seen that the mean response-time
fastly grows after threshold 70. The mean response-
time is around 15 time steps for threshold 70 and
around 89 time steps for threshold 100. Hence, one
can get a faster but a bit less accurate response
from S4NN by lowering the threshold of a pre-trained
network.

4. Discussion

SNNs are getting more and more popular these
days45–50 and it is one of the best tools to study
computations in the brain.51–59 In this paper, we
proposed a SNN (called S4NN) comprised of mul-
tiple layers of nonleaky IF neurons with time-to-
first-spike coding and temporal error backpropaga-
tion. Regarding the fast processing of objects in
visual cortex (often in range 100–150ms) and the
fact that there are at least 10 synapses from photo-
receptors in retina to object responsive neurons in
inferotemporal (IT) cortex, each neuron has only
about 10–15ms to perform its computation which is
not enough for rate coding.60 Also, it is shown that
the first wave of spikes in IT cortex around 100 ms
after the image presentation carries enough informa-
tion for object recognition,61 indicating the impor-
tance of early spikes. In addition, there are many
other neurophysiological62,63 and computational26,27

evidence supporting the importance of first-spike-
coding.

According to our employed temporal coding,
input neurons emit a spike with a latency nega-
tively proportional to the corresponding pixel value
and upstream neurons are allowed to fire only once
at most. The proposed temporal error backpropaga-
tion, pushes the correct output neuron to fire earlier
than others. It forces the network to make quick and
accurate decisions with few spikes (high sparsity).
Our experiments on Caltech face/motorbike (99.2%
accuracy) and MNIST (97.4% accuracy) datasets
show the merits of S4NN to accurately solve object
recognition tasks with a simpler neuron model (i.e.

2050027-12

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

nonleaky IF) compared to other recent supervised
SNNs with temporal learning rules.

Let’s assume an S4NN model with l layers, where
n is the number of neurons in the largest layer of
the network. In a clock-based implementation, for
any layer, the membrane potential of all neurons at
any time step can be updated in O(n2). Therefore,
the feedforward path of S4NN can be performed in
O(l∗n2 ∗ t), where t is the time step of the first spike
in the output layer. Note that the proposed tempo-
ral backpropagation forces the network to respond as
accurate and early as possible. Hence, the required
time steps, t, would be much smaller than the maxi-
mum simulation time. Note that the actual computa-
tional time of S4NN could be shorter when the time
step period is shorter.

Hardware implementations are out of the scope
of this paper. However, S4NN has some important
features that might make it more (digital) hard-
ware friendly. First, computation is restricted to at
most one spike per neuron, and in practice, a deci-
sion is made before most neurons have fired. Con-
versely, spike-rate-based SNNs require a longer time
to have enough output spikes to make a confident
decision. Our approach is thus advantageous in terms
of latency, but also in terms of energy, since on most
neuromorphic chips energy consumption is mainly
caused by spikes.10 Second, our approach is mem-
ory efficient, as we can forget the state of a neu-
ron as soon as it has fired, and re-use the corre-
sponding memory for other neurons. Note that other
approaches with at most one spike per neuron also
share these three advantages.24,25,34,64 Yet our neu-
ron model is much simpler: there is no leak, and
the synapses are instantaneous, which, as explained
below, make it more hardware-friendly. Here we have
shown for the first time that backpropagation can
be adapted to this simple neuron model, even if this
requires some approximation (Eq. (6)).

If a leak can be efficiently implemented in analog
hardware using the physics of transistors or capac-
itors,9 it is always costly in digital hardware. Two
approaches have been proposed. Either the poten-
tial of all neurons is decreased periodically, for exam-
ple, every millisecond (see e.g. Ref. 65). Obviously,
this approach is energy–hungry. The leak can also
be handled in an event-based manner: leakage is
taken into account when an input spike is received,
based on the elapsed time since the last input spike

(see e.g. Refs. 66 and 67). But this requires stor-
ing the last input spike time for each neuron, which
increases the memory footprint. Finally, instanta-
neous synapses are by far the most simple synapses
to handle: each input spike causes a punctual poten-
tial increment. Current-based, or conductance-based
synapses, require a state parameter, and each input
spike causes the potential to be updated on several
consecutive time steps.

Due to the nondifferentiability of the threshold-
ing activation function of spiking neurons at their fir-
ing times, applying gradient descent and backprop-
agation algorithms to SNNs has always been a big
challenge. Different studies proposed different tech-
niques including rate-based differentiable activation
functions,13–15 smoothed spike generators,16 and sur-
rogate gradients.8,17–21 All these approaches do not
deal with spike times. In the last approach, known as
latency learning, neuronal activity is defined based
on its firing time (usually the first spike) and con-
trary to the three previous approaches, the deriva-
tion of the thresholding activation function is not
needed. However, they need to define the firing time
of the neuron as a function of its membrane poten-
tial or the firing time of presynaptic neurons and
use its derivation in the backpropagation process.
For instance, in Spikeprop,23 authors use a linear
approximation function that relies on the changes
of the membrane potential around the firing time
(hence, they can not use the IF neuron model).
Also, in Mostafa,24 by using exponentially decaying
synapses, the author has defined the firing time of a
neuron directly based on the firing times of its presy-
naptic neurons. Here, by assuming a monotonically
increasing linear relation between the firing time and
the membrane potential, we could use IF neurons
with instantaneous synapses in the proposed S4NN
model.

SNNs with latency learning use single-spike-time
coding, and hence, there is a problem if neurons do
not reach their threshold, because then the latency
is not defined. There are different approaches to deal
with this problem. In Mostafa,24 the author uses non-
leaky neurons and makes sure that the sum of the
weights is more than the threshold or in Comsa,25

authors use fake input “synchronization pulses” to
push neurons over the threshold. In the proposed
S4NN, we assume that if a neuron has not fired
during the simulation it will fire sometime after the

2050027-13

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

simulation, thus, we force it to emit a fake spike at
the last time step.

Here, we just tested the S4NN on image cat-
egorization tasks, future studies can test S4NN
on other data modalities. As shown on the Cal-
tech face/motorbike dataset, the proposed learning
rule is scalable and can be used in deeper S4NN
architectures. Also, it can be used in convolutional
spiking neural networks (CSNNs). Current CSNNs
are mainly converted from traditional CNNs with
rate68–71 and temporal coding.72 Although these net-
works are well in terms of accuracy, they might not
work efficiently in terms of computational cost or
time. Recent efforts to develop CSNNs with spike-
based backpropagation have led to impressive results
on different datasets,73,74 however, they use costly
neuron models and rate coding schemes. Hence,
extending the proposed S4NN to convolutional archi-
tectures can provide large computational benefits.
The most important challenge in this way is to
prevent vanishing/exploding gradients and learning
under the weight-sharing constraint in convolutional
layers. But contrary to the rate-based CSNNs, the
max-pooling operation can be simply done by prop-
agating the first spike emerging inside the receptive
field of each pooling neuron.

Moreover, although SNNs are more hardware
friendly than traditional ANNs, the backpropaga-
tion process in supervised SNNs is not easy to be
implemented in hardware. Recently, efforts are made
to approximate backpropagation using spikes75 that
can be used in S4NN and make it more suitable for
hardware implementation.

Acknowledgments

This research was partially supported by the French
Agence Nationale de la Recherche (Grant: Beating
Roger Federer ANR-16-CE28-0017-01). The authors
would like to thank Dr. A. Yousefzadeh for his
valuable comments and discussions and Dr. J. P.
Jaffrézou for proofreading this paper.

References

1. R. VanRullen, R. Guyonneau and S. J. Thorpe, Spike
times make sense. Trends Neurosci. 28(1) (2005)
1–4.

2. R. Brette, Philosophy of the spike: Rate-based ver-
sus spike-based theories of the brain, Front. Syst.
Neurosci. 9 (2015) 151.

3. A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P.
Maguire and T. M. McGinnity, A review of learn-
ing in biologically plausible spiking neural networks,
Neural Netw. 122 (2020) 253–272.

4. M. Pfeiffer and T. Pfeil, Deep learning with spiking
neurons: Opportunities and challenges, Front. Neu-
rosci. 12 (2018) 774.

5. S. Ghosh-Dastidar and H. Adeli, Spiking neural net-
works, Int. J. Neural Syst. 19(4) (2009) 295–308.

6. B. Illing, W. Gerstner and J. Brea, Biologically plau-
sible deep learning–but how far can we go with shal-
low networks? Neural Netw. 118 (2019) 90–101.

7. A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh,
T. Masquelier and A. Maida, Deep learning in spik-
ing neural networks, Neural Netw. 111 (2019) 47–63.

8. E. O. Neftci, H. Mostafa and F. Zenke, Surrogate
gradient learning in spiking neural networks, IEEE
Signal Processing Magazine 36 (2019) 61–63.

9. K. Roy, A. Jaiswal and P. Panda, Towards spike-
based machine intelligence with neuromorphic com-
puting, Nature 575 (2019) 607–617.

10. M. Oster, R. Douglas and S.-C. Liu, Quantifying
input and output spike statistics of a winner-take-all
network in a vision system, in 2007 IEEE Int. Symp.
Circuits and Systems (IEEE, 2007), pp. 853–856.

11. R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner,
A. Linares-Barranco, R. Paz-Vicente, F. Gómez-
Rodŕıguez, L. Camuñas-Mesa, R. Berner, M. Rivas-
Pérez, T. Delbruck et al., Caviar: A 45k neuron,
5m synapse, 12g connects/s aer hardware sensory–
processing–learning–actuating system for high-speed
visual object recognition and tracking, IEEE Trans.
Neural Netw. 20(9) (2009) 1417–1438.

12. C. Posch, T. Serrano-Gotarredona, B. Linares-
Barranco and T. Delbruck, Retinomorphic event-
based vision sensors: Bioinspired cameras with spik-
ing output, Proc. IEEE 102(10) (2014) 1470–1484.

13. E. Hunsberger and C. Eliasmith, Spiking deep net-
works with life neurons, arXiv:1510.08829.

14. J. H. Lee, T. Delbruck and M. Pfeiffer, Training
deep spiking neural networks using backpropagation,
Front. Neurosci. 10 (2016) 508.

15. E. O. Neftci, C. Augustine, S. Paul and G. Detorakis,
Event-driven random back-propagation: Enabling
neuromorphic deep learning machines, Front. Neu-
rosci. 11 (2017) 324.

16. D. Huh and T. J. Sejnowski, Gradient descent for
spiking neural networks, Adv. Neural Inf. Process.
Syst. 31 (2018) 1433–1443.

17. S. M. Bohte, Error-backpropagation in networks of
fractionally predictive spiking neurons, Int. Conf.
Artificial Neural Networks (Springer, 2011), pp. 60–
68.

18. S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cas-
sidy, R. Appuswama, A. Andreopoulos, D. J. Berg,
J. L. McKinstry, T. Melano, D. R. Barch, C. D.
Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flick-
ner and D. S. Modha, Convolutional networks for

2050027-14

June 1, 2020 10:42 2050027

Temporal Backpropagation for Spiking Neural Networks

fast energy-efficient neuromorphic computing, Proc.
Natl. Acad. Sci. USA 113(41) (2016) 11441–11446.

19. S. B. Shrestha and G. Orchard, Slayer: Spike layer
error reassignment in time, Adv. Neural Inf. Process.
Syst. 31 (2018) 1412–1421.

20. F. Zenke and S. Ganguli, Superspike: Supervised
learning in multilayer spiking neural networks, Neu-
ral Comput. 30(6) (2018) 1514–1541.

21. G. Bellec, D. Salaj, A. Subramoney, R. Legen-
stein and W. Maass, Long short-term memory and
learning-to-learn in networks of spiking neurons,
Adv. Neural Inf. Process. Syst. 31 (2018) 787–797.

22. R. Zimmer, T. Pellegrini, S. Singh Fateh and
T. Masquelier, Technical report: Supervised train-
ing of convolutional spiking neural networks with
PyTorch, (2019), arXiv: 1911.10124.

23. S. M. Bohte, H. La Poutré and J. N. Kok,
Error-backpropagation in temporally encoded net-
works of spiking neurons, Neurocomput. 48 (2000)
17–37.

24. H. Mostafa, Supervised learning based on temporal
coding in spiking neural networks, IEEE Trans. Neu-
ral Netw. Learning Syst. 29(7) (2017) 3227–3235.

25. I. M. Comsa, K. Potempa, L. Versari, T. Fis-
chbacher, A. Gesmundo and J. Alakuijala, Temporal
coding in spiking neural networks with alpha synap-
tic function, IEEE International Conference on
Acoustics, Speech, and Signal Processing (Barcelona,
Spain, 2020).

26. S. J. Thorpe and J. Gautrais, Rank order coding,
in Computational Neuroscience: Trends in Research,
ed. J. M. Bower (Plenum Press, New York, 1998),
pp. 113–118.

27. S. Thorpe, A. Delorme and R. V. Rullen, Spike-based
strategies for rapid processing, Neural Netw. 14(6–7)
(2001) 715–725.

28. T. Masquelier and S. J. Thorpe, Unsupervised learn-
ing of visual features through spike timing dependent
plasticity, PLoS Comput. Biol. 3(2) (2007) e31.

29. S. R. Kheradpisheh, M. Ganjtabesh and T. Masque-
lier, Bio-inspired unsupervised learning of visual fea-
tures leads to robust invariant object recognition,
Neurocomput. 205 (2016) 382–392.

30. S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe
and T. Masquelier, Stdp-based spiking deep convolu-
tional neural networks for object recognition, Neural
Netw. 99 (2018) 56–67.

31. M. Mozafari, S. R. Kheradpisheh, T. Masquelier,
A. Nowzari-Dalini and M. Ganjtabesh, First-spike-
based visual categorization using reward-modulated
stdp, IEEE Trans. Neural Netw. Learning Syst.
29(12) (2018) 6178–6190.

32. M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini,
S. J. Thorpe and T. Masquelier, Bio-inspired digit
recognition using reward-modulated spike-timing-
dependent plasticity in deep convolutional networks,
Pattern Recognit. 94 (2019) 87–95.

33. M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini and
T. Masquelier, SpykeTorch: Efficient simulation of
convolutional spiking neural networks with at most
one spike per neuron, Front. Neurosci. 13 (2019)
1–12.

34. J. Göltz, A. Baumbach, S. Billaudelle, O. Bre-
itwieser, D. Dold, L. Kriener, A. F. Kungl, W. Senn,
J. Schemmel, K. Meier and M. A. Petrovici, Fast and
deep neuromorphic learning with time-to-first-spike
coding (2019), arXiv: 1911.10124.

35. R. Vaila, J. Chiasson and V. Saxena, Feature
extraction using spiking convolutional neural net-
works, in Proc. Int. Conf. Neuromorphic Systems —
ICONS ’19 (ACM Press, New York, USA, 2019), pp.
1–8.

36. P. Falez, P. Tirilly, I. M. Bilasco, P. Devienne and
P. Boulet, Multi-layered spiking neural network with
target timestamp threshold adaptation and stdp,
2019, Int. Joint Conf. Neural Netw. (IJCNN) (IEEE,
2019), pp. 1–8.

37. A. N. Burkitt, A review of the integrate-and-fire neu-
ron model: Ii. inhomogeneous synaptic input and
network properties, Biol. Cybernet. 95(2) (2006) 97–
112.

38. I. Goodfellow, Y. Bengio and A. Courville, Deep
Learning, Chap. 6.5 (MIT Press, 2016), pp. 200–220.

39. Y. LeCun, Y. Bengio and G. Hinton, Deep learning,
Nature 521(7553) (2015) 436–444.

40. J. Schmidhuber, Deep learning in neural networks:
An overview, Neural Netw. 61 (2015) 85–117.

41. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner
et al., Gradient-based learning applied to docu-
ment recognition, Proc. IEEE 86(11) (1998) 2278–
2324.

42. R. Vaila, J. Chiasson and V. Saxena, Deep convo-
lutional spiking neural networks for image classifica-
tion, arXiv:1903.12272.

43. A. Krizhevsky, I. Sutskever and G. E. Hinton, Ima-
genet classification with deep convolutional neural
networks, Adv. Neural Inf. Process. Syst. 25 (2012)
1097–1105.

44. A. Tavanaei and A. Maida, Bp-stdp: Approximating
backpropagation using spike timing dependent plas-
ticity, Neurocomput. 330 (2019) 39–47.

45. T. Wu, F.-D. B̂ılb̂ıe, A. Păun, L. Pan and F. Neri,
Simplified and yet turing universal spiking neural p
systems with communication on request, Int. J. Neu-
ral Syst. 28(8) (2018) 1850013.

46. M. Bernert and B. Yvert, An attention-based spiking
neural network for unsupervised spike-sorting, Int. J.
Neural Syst. 29 (2018) 1850059.

47. F. Galán-Prado, A. Morán, J. Font, M. Roca and
J. L. Rosselló, Compact hardware synthesis of
stochastic spiking neural networks, Int. J. Neural
Syst. 29 (2019) 1950004.

48. R. Hu, Q. Huang, H. Wang, J. He and S. Chang,
Monitor-based spiking recurrent network for the

2050027-15

June 1, 2020 10:42 2050027

S. R. Kheradpisheh & T. Masquelier

representation of complex dynamic patterns, Int. J.
Neural Syst. 29 (2019) 1950006.

49. A. Geminiani, C. Casellato, A. Antonietti,
E. D’Angelo and A. Pedrocchi, A multiple-plasticity
spiking neural network embedded in a closed-loop
control system to model cerebellar pathologies, Int.
J. Neural Syst. 28(5) (2018) 1750017.

50. X. Zhang, G. Foderaro, C. Henriquez and S. Ferrari,
A scalable weight-free learning algorithm for regula-
tory control of cell activity in spiking neuronal net-
works, Int. J. Neural Syst. 28(2) (2018) 1750015.

51. G. Antunes, S. F. Faria da Silva and F. M.
Simoes de Souza, Mirror neurons modeled through
spike-timing-dependent plasticity are affected by
channelopathies associated with autism spectrum
disorder, Int. J. Neural Syst. 28(5) (2018) 1750058.

52. A. Antonietti, J. Monaco, E. D’Angelo, A. Pedrocchi
and C. Casellato, Dynamic redistribution of plastic-
ity in a cerebellar spiking neural network reproduc-
ing an associative learning task perturbed by tms,
Int. J. Neural Syst. 28(9) (2018) 1850020.

53. S. Ghosh-Dastidar and H. Adeli, A new supervised
learning algorithm for multiple spiking neural net-
works with application in epilepsy and seizure detec-
tion, Neural Netw. 22(10) (2009) 1419–1431.

54. S. Ghosh-Dastidar and H. Adeli, Improved spiking
neural networks for EEG classification and epilepsy
and seizure detection, Integr. Comput.-Aided Eng.
14(3) (2007) 187–212.

55. H. Adeli and S. Ghosh-Dastidar, Automated EEG-
Based Diagnosis of Neurological Disorders: Inventing
the Future of Neurology (CRC Press, 2010).

56. H. Peng, J. Yang, J. Wang, T. Wang, Z. Sun,
X. Song, X. Luo and X. Huang, Spiking neural p sys-
tems with multiple channels, Neural Netw. 95 (2017)
66–71.

57. T. Wu, A. Păun, Z. Zhang and L. Pan, Spiking neu-
ral p systems with polarizations, IEEE Trans. Neural
Netw. Learn. Syst. 29(8) (2017) 3349–3360.

58. L. Pan, G. Păun, G. Zhang and F. Neri, Spiking neu-
ral p systems with communication on request, Int. J.
Neural Syst. 27(8) (2017) 1750042.

59. H. Peng, J. Wang, P. Shi, M. J. Pérez-Jiménez and
A. Riscos-Núñez, An extended membrane system
with active membranes to solve automatic fuzzy clus-
tering problems, Int. J. Neural Syst. 26(3) (2016)
1650004.

60. S. J. Thorpe, Spike arrival times: A highly efficient
coding scheme for neural networks, Parallel Process.
Neural Syst. (1990) 91–94.

61. C. P. Hung, G. Kreiman, T. Poggio
and J. J. DiCarlo, Fast readout of object iden-
tity from macaque inferior temporal cortex, Science
310(5749) (2005) 863–866.

62. F. Bengtsson, R. Brasselet, R. S. Johansson, A. Arleo
and H. Jörntell, Integration of sensory quanta in
cuneate nucleus neurons in vivo, PloS One 8(2)
(2013) e56630.

63. R. Brasselet, R. S. Johansson and A. Arleo, Quanti-
fying neurotransmission reliability through metrics-
based information analysis, Neural Comput. 23(4)
(2011) 852–881.

64. C. Stöckl and W. Maass, Recognizing images with at
most one spike per neuron, (2019), pp. 1–14, arXiv:
2001.01682.

65. A. Yousefzadeh, T. Masquelier, T. Serrano Gotarre
dona and B. Linares-Barranco, Hardware implemen-
tation of convolutional STDP for on-line visual fea-
ture learning, 2017 IEEE International Symposium
on Circuits and Systems (ISCAS) (Baltimore, MD,
USA, 2017), pp. 1–4.

66. A. Yousefzadeh, T. Serrano-Gotarredona and
B. Linares-Barranco, Fast Pipeline 128 × 128 pixel
spiking convolution core for event-driven vision
processing in FPGAs, in 2015 International Con-
ference on Event-Based Control, Communication,
and Signal Processing (EBCCSP), (IEEE, 2015),
pp. 1–8.

67. G. Orchard, C. Meyer, R. Etienne-Cummings, C.
Posch, N. Thakor and R. Benosman, HFirst: A tem-
poral approach to object recognition, IEEE Trans.
Pattern Analy. Mach. Intell. 37 (2015) 2028–2040.

68. Y. Cao, Y. Chen and D. Khosla, Spiking deep con-
volutional neural networks for energy-efficient object
recognition, Int. J. Comput. Vis. 113(1) (2015)
54–66.

69. P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni
and E. Neftci, Conversion of artificial recurrent neu-
ral networks to spiking neural networks for low-
power neuromorphic hardware, in 2016 IEEE Int.
Conf. Rebooting Computing (ICRC) (IEEE, 2016),
pp. 1–8.

70. A. Sengupta, Y. Ye, R. Wang, C. Liu and K. Roy,
Going deeper in spiking neural networks: Vgg and
residual architectures, Front. Neurosci. 13 (2019) 95.

71. B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer and
S.-C. Liu, Conversion of continuous-valued deep net-
works to efficient event-driven networks for image
classification, Front. Neurosci. 11 (2017) 682.

72. B. Rueckauer and S.-C. Liu, Conversion of analog
to spiking neural networks using sparse temporal
coding, 2018 IEEE Int. Symp. Circuits and Systems
(ISCAS), (IEEE, 2018), pp. 1–5.

73. Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie and L. Shi,
Direct training for spiking neural networks: Faster,
larger, better, Proc. AAAI Conf. Artif. Intell. 33
(2019) 1311–1318.

74. C. Lee, S. S. Sarwar and K. Roy, Enabling spike-
based backpropagation in state-of-the-art deep neu-
ral network architectures (2019), arXiv:1903.06379.

75. J. C. Thiele, O. Bichler and A. Dupret, Spikegrad:
An ann-equivalent computation model for imple
menting backpropagation with spikes (2019), arXiv:
1906.00851.

2050027-16

	Introduction
	Methods
	Time-to-first-spike coding
	Forward path
	IF approximating ReLU
	Backward path
	Relative target firing time
	Learning procedure

	Results
	Caltech face/motorbike dataset
	MNIST dataset

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

