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Abstract. In the early stages of Alzheimer’s disease (AD), neurofibrillary tangles develop in the mesial temporal lobe (MTL), first
in the anterior subhippocampal (perirhinal/entorhinal) cortex and then in the hippocampal formation. This region plays a key role
in visual recognition memory (VRM). VRM has been reported to be impaired in patients with amnestic mild cognitive impairment
(aMCI). The aim of the present study was to determine if an impairment of VRM is associated with metabolic changes in the MTL
using magnetic resonance spectroscopic imaging and if evaluating VRM can contribute to the early diagnosis of AD. 28 patients
with aMCI and 28 controls underwent a full neuropsychological assessment including an evaluation of VRM using the DMS48.
NAA/mIno ratios, reduced in patients with AD and associated with the severity of pathological changes, were determined in
the MTL. aMCI-patients were further divided into two subgroups according to their VRM performance. aMCI-patients showed
decreased NAA/mIno levels in the right hippocampus compared with controls. aMCI-patients with impaired VRM showed
decreased NAA/mIno ratios in the MTL bilaterally, including a region that sampled the left anterior subhippocampal cortex,
compared to controls. No changes were found in aMCI patients with normal VRM. Performance on the DMS48 correlated with
NAA/mIno levels in the anterior MTL. Clinical 6-year follow-up data (available for 78.6% of the aMCI-patients) indicates that
impaired performance on the DMS48 could predict conversion to AD with a sensitivity and specificity of 81.8%. These findings
provide further evidence that impaired VRM, as a hallmark of MTL dysfunction, may contribute to the early diagnosis of AD.
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INTRODUCTION

Reliable diagnosis of Alzheimer’s disease (AD) at
the predementia stage is currently considered to be a
priority for research, as disease modifying therapies are
being evaluated. In AD, neurofibrillary tangles (NFT)
initially develop in the mesial temporal lobe (MTL)
in a sequential manner, initially affecting the anterior
subhippocampal cortex (transentorhinal,entorhinal and
perirhinal cortex) before reaching the hippocampal for-
mation [1,2]. Although the difficulty of identifying
boundaries of the entorhinal and perirhinal cortex, as
well as the inter-personal variability of these anterior
subhippocampal structures make it more difficult to as-
sess than the hippocampal formation using neuroimag-
ing techniques, potential non-invasive diagnostic tools
that could reliably detect change of the subhippocam-
pal region are currently receiving increasing interest.
Using MRI, several studies demonstrated atrophy of
the entorhinal cortex in incipient AD [3–8] and patients
with cognitive complaints [6]. Baseline entorhinal cor-
tex volume has been shown to be a better predictor for
decline from MCI to AD than hippocampal volume [6,
8].

The function of the anterior subhippocampal cortex
and its contribution to declarative memory is still debat-
ed. Meunier and collaborators demonstrated in experi-
mental studies on non-human primates that selective le-
sions to the perirhinal and entorhinal cortex lead to im-
paired visual recognition memory (VRM) [9]. There is
also increasing evidence from studies on patients with
focal damage to the hippocampal formation that the
anterior subhippocampal cortex plays a crucial role in
VRM [10–13].

In addition, Barbeau and collaborators found VRM
performance to correlate with the volume of the ante-
rior subhippocampal cortex in aMCI patients [14]. In
order to contribute to early diagnosis of AD, our group
developed a delayed matching to sample task for hu-
man patients based on tasks used in experimental ani-
mals in order to evaluate VRM and assess the function
of the anterior subhippocampal cortex, the DMS48. In
previous studies, we reported that patients failing on
the DMS 48 had both clinical [15] and neuroimaging
features [14,16] of patients with early AD.

Regional pathologic metabolic change can be as-
sessed using magnetic resonance spectroscopic imag-
ing (MRSI). Several MRSI studies report changes in
metabolic patterns in AD at the stage of dementia, with
neuronal loss or dysfunction reflected by a decrease in
N-acetylaspartate (NAA) levels [17] and glial cell acti-

vation reflected by increased myo-Inositol (mIno) lev-
els [18–20]. Combining the NAA/mIno ratio has been
reported to increase diagnostic accuracy in AD [18]
and a correlative study recently demonstrated the ante-
mortem NAA/mIno ratio to be associated with severity
of AD pathology on postmortem brain tissue [21].

Metabolic changes in patients with MCI have also
been reported using MRSI. Many studies assessed easi-
ly accessible brain regions, such as the posterior cin-
gular cortex [21–23] or paratrigonal white matter [24].
MRSI studies focusing on the mesial temporal lobe
(MTL) in MCI patients have so far been limited to the
hippocampus [19,25] or extended to the MTL, without
taking into account its subcomponents [26,27]. While
several of these studies report metabolic changes main-
ly concerning NAA levels within the MTL in patients
with MCI [19,25,26], one study reported no metabol-
ic change [27]. To our knowledge, metabolic changes
in the anterior subhippocampal regions, the site where
NFT first appear in AD, have not specifically been
investigated yet, probably because of technical chal-
lenges related to the size and the topography of the
MTL leading to frequent artifacts.

The aim of the present study in aMCI-patients
was twofold: 1) to determine if an impairment of
VRM, a functional deficit previously reported in aMCI-
patients at risk for AD, is associated with changes
of the NAA/mIno-ratio within the MTL; 2) to assess
NAA/mIno-ratios in subregions within the MTL in-
cluding the anterior subhippocampal structures where
NFT first develop in AD in patients with aMCI.

MATERIALS AND METHODS

Subjects

28 patients strictly meeting criteria for aMCI [28],
consecutively enrolled into the Marseilles memory
study (Mms) were included. Only patients with single
domain amnestic MCI were selected, with a memory
complaint, a performance of more than 1.5 SD below
the mean of matched control subjects on delayed free
recall of a verbal memory task, intact activities of daily
living and no impairment in other cognitive domains
like language, visuo-spatial skills, or executive function
using normative data for matched controls. Brain imag-
ing, routine biological survey, detailed neuropsycho-
logical evaluation, assessment of daily activities, psy-
chiatric interview, and physical examination had been
conducted prior to the inclusion into the present study
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in order to exclude patients with a memory impair-
ment subsequent to vascular disease, tumor, subdural
hematoma, treatment, and concurrent diseases interfer-
ing with cognitive function. Other exclusion criteria
were a history of systemic and/or neurological disease
and a modified Hachinski ischemic score � 2 [29].

28 consecutively enrolled control subjects with nor-
mal cognitive functions and no history of systemic,
mental, and neurological disorder were also included.

The procedures were done in accord with the ethical
standards of the Committee on Human Experimenta-
tion of the institution and the local institutional commit-
tee approved this study. All subjects signed informed
consent. Both, patients and controls underwent a full
neuropsychological evaluation followed by MRSI ex-
ploration.

Assessment of VRM using the DMS48

The DMS48 (delayed matching to sample – 48 items;
downloadable for research purposes at http://www.
cerco.ups-tlse.fr/∼DMS48) [15] is a VRM test direct-
ly derived from tasks used in animal studies [9]. In
the DMS48, stimuli to be learned consist of 48 color
drawings. During the incidental learning phase, sub-
jects are asked to look at each drawing carefully and
state whether there are more or less than three colors in
it. The time to complete the learning phase is record-
ed. Because the incidental learning phase is carefully
monitored and because the subject is exposed to the
stimuli twice before the long-term recognition phase,
the possibility for the subjects to encode the stimuli
is optimized (although encoding is not formally con-
trolled since learning is incidental). This is followed
by an interfering category fluency task. During the
recognition task, each target is shown simultaneously
with a distractor and the subject is asked to identify the
target. Recognition is evaluated after a 3 minutes delay
following the interfering task, and delayed recognition
one hour later. Results reported in the present study are
percentages of correct recognitions after the one-hour
delay.

In order to control for deficits that could interfere
with performance on the DMS48, visuo-perceptive
abilities and short-term visual memory were previous-
ly evaluated during the neuropsychological assessment
and only patients with normal performance were in-
cluded.

aMCI subgroups

aMCI-patients were subdivided into two groups, ac-
cording to their performance on the DMS48, defining

the cut-off of impaired performance at 1.5 SD below
the mean of age-matched controls [30].

MRSI

MR explorations were performed on a 1.5T MR scan-
ner (Magnetom Vision Plus system,Siemens, Erlangen,
Germany). The spectroscopic examination consisted
of two 2D-MRSI slices acquired in the axial bihip-
pocampal plane (Fig. 1) at two levels: the first slice was
centered on the hippocampal formation (10 mm thick-
ness), and the second was contiguous to the first slice
but located 10 mm below including anterior subhip-
pocampal tissue (Fig. 1). The MRSI acquisitions con-
sisted in home-designed Hamming shape acquisition–
weighted, inversion recovery (IR) 2D-SE pulse se-
quences (TI/TE/TR=150ms/22ms/1500ms; slice thick-
ness 10mm; FOV=240 mm, 21 × 21 encoding steps
leading to 524 free induction decays; acquired in 11
min 27 s) with outer volume suppression scheme [31,
32]. The IR scheme was used in order to minimize the
contribution of fat scalp in the spectra. All radiofre-
quency pulses were optimized and generated using the
Matpulse software [33] The spatial resolution was de-
fined as the width of the spatial response function at
64% of maximum voxel volume of 5.7 mL [34,35].
Due to the pseudo circular spatial k sampling, voxel
shape was cylindrical, resulting in an effective resolu-
tion of 22 mm of diameter. The water/lipid suppression
scheme was implemented according to Tkac et al. [36]
with outer volume saturation and chemical selection
saturation scheme to suppress scalp fat and water sig-
nals, respectively. Automatic (mapshim) and manual
shimming was performed on the water signal in the
slice of interest. Measurement was conducted after op-
timization (frequency and pulse intensity) of the water
suppression scheme.

Regions of interest (ROIs) for spectroscopic anal-
yses within the mesial temporal lobe were delineat-
ed in ROIs in the bi-hippocampal plane at two lev-
els. The first slice was centered on the hippocampal
formation because of evidence for metabolic change
in this area from studies in AD [17,27] and MCI [19,
25] using MRSI and because NFT in the hippocam-
pal formation have been reported in patients with AD
at the stage of MCI [37]. Because of evidence for
an antero-posterior gradient in the distribution of NFT
within the hippocampal formation, NFT first appear-
ing in the CA1 subfield of the hippocampus [38], most
represented in the head of the hippocampus, and stud-
ies suggesting an antero-posterior gradient concerning
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Fig. 1. MRSI slices acquired to sample medial temporal lobe structures in aMCI patients and controls. Schematic representation of the MRSI
ROIs including real point spread function. The gray shade represents the saturation bands used to limit fat bone contamination. The first MRSI
slice was centered on the hippocampus to sample the amygdala and the head of the hippocampus (ROIs 1 and 4), the body of hippocampus (ROIs
2 and 5) and the tail of the hippocampus (ROIs 3 and 6). The second MRSI slice was contiguous to the first and positioned just below in order
to sample perirhinal/entorhinal cortices and part of the head of the hippocampus (ROIs 7 and 10), the medial parahippocampal cortex and part of
the body of the hippocampus (ROIs 8 and 11), the posterior parahippocampal cortex, and part of the tail of the hippocampus (ROI 9 and 12).

declarative memory [39], several ROIs were placed
along its long axis. The rostral ROI included signal
from both the amygdala and part of the head of the
hippocampus (ROI 1 and ROI 4). Another ROI was
placed in the hippocampal body (ROI 2 and ROI 5) and
a caudal ROI was placed in the tail of the hippocam-
pus (ROI 3 and ROI 6). The second MRSI slice was
contiguous to the first and positioned just below in or-
der to sample metabolites in the perirhinal/entorhinal
cortices because of evidence for neurofibrillary tangles
in transentorhinal, perirhinal and entrorhinal cortex in
Braak and Braak’s stage I of AD [1,2] and evidence
for the involvement of these anterior subhippocampal
areas in visual recognition memory [9,11,13,14] (ROI
7 and 10). For comparative reasons, we also sampled
the medial parahippocampal cortex (ROI 8 and 11) and
the posterior parahippocampal cortex (ROI 9 and 12),
since modular models of declarative memory suggest
that more posterior parts of the parahippocampal gyrus
are not involved in visual recognition memory [40,41].
However, because of the technical challenge related to
the assessment of the anterior subhippocampal areas
and the parahippocampal gyrus with MRSI due to their
small size and neighboring structures causing artifacts,

all ROIs of the second MRSI slice included some ad-
ditional signal from the hippocampal formation.

MRSI data were post-processed and quantified with
a home-written software (CSIAPO) [42] based on
the IDL platform (Interactive Data Language, Re-
search System Inc., Boulder, CO). Time domain post-
processing was conducted on spectroscopic raw da-
ta. The remaining water signal was removed us-
ing the Hankel Lanczos singular value decomposition
(HLSVD) method [43]. Time domain fitting was per-
formed with AMARES (advanced method for accurate,
robust, and efficient spectral fitting) [44] to quantify
the areas of signals corresponding to NAA and mI-
no. Quality of fits was evaluated visually by looking
at the residuals of the difference between the modeled
and the real spectra and validated by Cramer-Rao of
AMARES analysis. Meaningless fitting results were
discarded. The metabolic ratio NAA/mIno was deter-
mined because of evidence for a high diagnostic accu-
racy using this ratio in AD [18] and the association of
NAA/mIno ratio with Braak and Braak stages in a cor-
relative neuro-pathological study [21], as well as corre-
lations of cognitive measures reflecting disease severity
with this ratio [17,18].
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Table 1
Demographic and neuropsychological data of patients and controls at the time of scan

Controls aMCI aMCI subgroup aMCI subgroup
DMS48+ DMS48 –

n 28 28 12 16
Women/men 13/15 16/12 7/5 9/7
Age in years 63.3 (7.2) 69.3 (8.6)∗ 72.1 (9.1)∗ 67.3 (7.8)
MMSE 28.9 (1.0) 27.4 (1.4)∗ 27.7 (1.7)∗ 27.2 (1.2)∗
Assessment of memory
DMS48 (max = 100%) 98% (3%) 87% (10%)∗ 95% (3%)∗ 82% (9%)∗,a

Delayed free recall of a word list (max = 16) 13.1 (1.7) 5.3 (3.1)∗ 6.8 (2.5)∗ 4.2 (3.1)∗,a

Cueing efficiency (max = 100%) 89% (22%) 74% (22%)* 86% (12%) 66% (24%)∗,a

Intrusions during recall 0.8 (1.2) 4.3 (5.2)∗ 1.8 (2.1) 8.2 (8.5)∗,a

Assessment of executive functions
WMS-III digit span scaled score 10.6 (3.2) 9.4 (2.9) 9.7 (3.1) 9.1 (2.7)
Verbal Fluency “P” in 2 mn 26.9 (7.1) 17.4 (4.7)∗ 19.5 (4.5)∗ 15.8 (6.2)∗,a

Verbal Fluency repetition 0.37 (0.69) 0.61 (0.96) 1.17 (1.19)∗ 0.19 (0.40)
MCST – categories (max = 6) n/a 4.8 (1.2) 4.8 (1.4) 4.7 (1.0)
MCST – errors n/a 19.39 (12.1) 21.5 (12.8) 17.8 (11.6)
Picture naming (max = 80) 79.7 (0.6) 79.3 (1.3) 78.7 (1.8) 79.6 (0.9)

Mean, SD in brackets. n/a: not available. ∗p < 0.05 relative to controls; ap < 0.05 aMCI succeeding on the
DMS48 relative to MCI failing on the DMS48. DMS48 +: aMCI subgroup with normal performance on the DMS48.
DMS48-: aMCI subgroup with impaired performance on the DMS48. MCST: Modified Card Sorting Test.

Clinical follow-up

In order to evaluate outcome, 22 patients were as-
sessed 6 years after the inclusion into the study. Four
of the remaining patients will be assessed at 6 year
follow-up over the coming year. Two patients died
before the 6 year follow-up due to acute diseases that
were unrelated to their memory dysfunction.

Data analysis

Statistical analyses were performed with SPSS Ver-
sion 17.0 (Chicago, IL). Comparisons of metabolic
peak ratios between aMCI (n = 28) and controls (n =
28) were assessed using ANOVA adjusted for age.
Nonparametric Mann-Whitney U test was used to com-
pare age and neuropsychological data, as well as for
comparisons of metabolic peak ratios between the sub-
group of aMCI failing (n = 16) and the subgroup suc-
ceeding on the DMS48 (n = 12), as well as for the com-
parison of both subgroups with controls. Khi square
test was used to compare age and gender between aMCI
and controls, as well as across aMCI subgroups. Non
parametric Spearman rank correlations were used to
determine relationships between metabolic ratios and
VRM performance for all subjects. Because each hypo-
thesis test addresses a distinct, although related, neu-
ropsychological, clinical and neuropathological ques-
tion of interest according to a pre-established hypo-
thesis, we did not correct reported p-values for multiple
comparisons [21,23,45]. The level of significance was
set at 0.05.

RESULTS

aMCI subgroups

12 aMCI-patients had normal DMS48 scores (DMS+),
while performance on the DMS48 was impaired in 16
patients (DMS-).

Demographics and neuropsychological evaluation.
Demographical and clinical data is displayed in Table 1.

aMCI-group compared to controls

Patients with aMCI were significantly older than con-
trols (p = 0.012). There was no difference concerning
gender between the aMCI group and controls. As ex-
pected, aMCI patients differed significantly from con-
trols on the Mini Mental State Examination (MMSE)
and all tasks evaluating memory. Compared with con-
trols, the aMCI group also produced significantly less
words beginning with the letter p on a verbal fluency
task [46]. The performance of aMCI-patients did not
differ from controls on other tasks evaluating executive
functions like the Modified Card Sorting test [47], the
digit span [48], or a picture naming task [49].

aMCI DMS- subgroup compared to controls

The aMCI-patient subgroup with impaired perfor-
mance on the DMS48 (DMS-) did not differ from that
of controls concerning age or gender. MMSE differed
from controls, as expected. Concerning the assessment
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Table 2
Follow-up data on conversion 6 years after the inclusion into the
study

aMCI subgroup aMCI subgroup
DMS48+ DMS48-

n 12 16
Converters 2 9
Non-converters 9 2
Follow-up scheduled 0 4
Not available for follow-up 1 1

Converters: patients with probable AD fulfilling NINCDS-ADRDA
criteria for AD [51]. Non-converters: patient not fulfilling NINCDS-
ADRDA criteria for AD [51]. DMS48 +: aMCI subgroup with
normal performance on the DMS48. DMS48-: aMCI subgroup with
impaired performance on the DMS48.

of memory, the aMCI DMS- subgroup differed from
controls on delayed free recall on the Free and Cued
Selective Reminding Test (FCSR) [50] and the delayed
recognition trial of the DMS48. Significantly more in-
trusions and less benefit from cueing on the FCSR were
also observed. Concerning executive functions, the
aMCI DMS- subgroups performed significantly worse
than controls on a verbal fluency task (letter p). No
difference between controls and the aMCI DMS- sub-
group was found on other tasks evaluating executive
functions or naming.

aMCI DMS+ subgroup compared to controls

While the aMCI subgroup with normal performance
on the DMS48 (DMS+) was significantly older than
controls (p < 0.01), there was no difference concern-
ing gender. MMSE differed from controls. The aMCI
DMS+ subgroup differed from controls on delayed free
recall on the Free and Cued Selective Reminding Test
(FCSR) and the delayed recognition trial of the DMS48.
Concerning executive functions, the aMCI DMS+ sub-
group performed significantly worse than controls on
a verbal fluency task (letter p) and more repetitions in
the verbal fluency task compared with controls were
also found. There were no differences on other tasks
evaluating executive functions or naming.

aMCI subgroup DMS – compared to aMCI subgroup
DMS+

The two subgroups of aMCI-patients did not dif-
fer concerning age or gender. MMSE did not dif-
fer between the subgroups either. Compared with the
DMS+ subgroup, the DMS48- aMCI subgroup per-
formed significantly worse on delayed free recall of
the FCSR, benefited less from cueing on this task and

made more intrusions. As expected, the DMS48- sub-
group performed significantly worse on the DMS48
than the DMS48+ subgroup. aMCI-patients failing on
the DMS48 produced significantly less words begin-
ning with the letter p than aMCI patients succeeding
on the task. No other differences were found on tasks
evaluating executive functions or naming comparing
the two subgroups.

Clinical follow-up data

22 of the 28 patients that were included into this
study were re-examined 6 years after the initial as-
sessment (78.6%). At follow-up, 11 patients fulfilled
NINCDS-ADRDA criteria for AD [51]. 6 of the pa-
tients still fulfilled criteria for MCI (Table 2). 5 pa-
tients, although still complaining of memory loss, re-
gained normal scores on tasks evaluating memory. Be-
low cut-off performanceon the DMS48 at baseline (i.e.,
1.5 SD below the mean of controls) predicted conver-
sion to AD at 6 year with a sensitivity of 81.8%, and a
specificity of 81.8%.

Metabolic MRSI profiles

aMCI- group compared to controls
Compared with controls and controlling for age, we

found a decreased NAA/mIno ratio in patients with
aMCI in the right body of the hippocampus (ROI 5)
(F-test p = 0.05 – group effect p = 0.02 – age effect
p = 0.98) (Table 3).

aMCI DMS- subgroup compared to controls
Compared to controls, the subgroup of aMCI-

patients with impaired VRM showed a decrease in
NAA/mIno in the right hippocampal body (ROI 5: p =
0.019) and in the region containing the left head of the
hippocampus and the amygdala (ROI 1: p = 0.049),
as well as in the region containing the left anterior sub-
hippocampal cortex (ROI 7: p = 0.049) (Table 3).

aMCI DMS+ subgroup compared to controls
aMCI-patients with normal performance on the

VRM task showed no significant difference of NAA/
mIno levels relative to controls (Table 3).

Correlations between performance on the DMS48 and
NAA/mIno

A correlation between performance on the DMS48
and NAA/mIno-ratios was observed in the ROI con-
taining anterior subhippocampal cortex on both the left
(ROI 7) (p = 0.029, rho: 0.323) and the right side (ROI
10) (p = 0.037, rho: 0.309), as well as for the left
anterior hippocampus (ROI 1) (p = 0.013, rho: 0.351).
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Table 3
Metabolic parameters

Regions Controls all aMCI aMCI DMS – aMCI DMS +

# Location (n = 28) (n = 28) (n = 16) (n = 12)
1 L amygdala/ head of HF 1.60 (0.72) 1.3 (0.56) 1.25 (0.28)∗∗ 1.58 (0.78)
4 R amygdala/head of HF 1.48 (0.48) 1.38 (0.45) 1.34 (0.53) 1.44 (0.32)
2 L body of HF 2.29 (0.48) 2.19 (0.44) 2.33 (0.44) 2.16 (0.39)
5 R body of HF 2.48 (0.50) 2.16 (0.49)∗ 2.07 (0.49)∗∗ 2.29 (0.48)
7 L PC – ER cortices 1.74 (0.40) 1.53 (0.33) 1.48 (0.30)∗∗ 1.63 (0.41)
10 R PC – ER cortices 1.80 (0.47) 1.64 (0.34) 1.60 (0.35) 1.74 (0.30)
8 L medial PH cortex/body of HF 2.26 (0.30) 2.41 (0.44) 2.44 (0.51) 2.38 (0.35)
11 R medial PH cortex/body of HF 2.43 (0.36) 2.49 (0.76) 2.60 (0.94) 2.36 (0.41)
3 L tail of HF 2.74 (0.42) 2.75 (0.41) 2.86 (0.43) 2.61 (0.32)
6 R tail of HF 2.90 (0.48) 2.75 (0.56) 2.77 (0.70) 2.71 (0.30)
9 L post PH cortex/tail of HF 2.96 (0.40) 2.83 (0.32) 2.90 (0.33) 2.75 (0.32)
12 R post PH cortex / tail of HF 3.07 (0.46) 2.98 (0.98) 3.13 (0.99) 2.77 (0.99)

DMS48 +: aMCI subgroup with normal performance on the DMS48. DMS48-: aMCI subgroup with
impaired performance on the DMS48. L = left, R = right, EC = entorhinal cortex, PC = perirhinal cortex,
HF = hippocampal formation, PH = parahippocampal cortex.
∗Significantly different from controls using ANOVA with group and age as variables.
∗∗Significantly different from controls (Mann-Whitney U test).

DISCUSSION

The aim of the present study was to evaluate, within
a group of amnestic MCI-patients at risk for AD, if
an impairment of visual recognition memory (VRM) is
associated with changes of the NAA/mIno ratio within
the MTL including the anterior subhippocampal struc-
tures where NFT first develop in AD. The main find-
ings of the study are: 1) Reduced NAA/mIno levels
were detected in the MTL of aMCI patients; 2) Re-
duced NAA/mIno ratios in several regions of the MTL
were only found in a subgroup of aMCI patients failing
on a VRM task designed to assess the function of the
anterior subhippocampal region; 3) Performance on the
VRM task was correlated with the NAA/mIno ratio of
anterior MTL structures. Finally, and from a practical
point of view, although we were able to sample brain
metabolites in a region containing the anterior subhip-
pocampal (perirhinal and entorhinal) cortex using 2D
MRSI at two levels, there was an overlap with the hip-
pocampus because of the technical difficulty of sam-
pling the anterior subhippocampal cortex exclusively.

Metabolic changes on MRSI in the MTL of aMCI
patients

Metabolic change within the MTL has inconsistent-
ly been reported in patients with MCI using MRSI.
Chantal et al. [19] and Ackl et al. [25] both reported
reduced NAA in the hippocampus in a population that
included patients with both, single domain and multi-
domain aMCI. The latter, although considered to have
a high likelihood of progression to AD [52] may re-

present a later stage of AD than single domain MCI,
since the memory impairment is associated with impair-
ment in other cognitive domains and, probably, more
widespread pathology. In a recent multicenter study,
the authors attributed the lack of metabolic change in
the MTL in MCI-patients partly to a selection bias, sug-
gesting that the low threshold in the inclusion criteria
consisting in performance below one standard deviation
on any cognitive task might have led to the inclusion
of a large proportion of patients without an underlying
degenerative disease [27]. The present study confirms
that metabolic changes can be detected in the MTL
as early as the stage of single domain amnestic MCI
(or in cognitively impaired but not-demented patients),
as previously reported by Chao and collaborators for
NAA [26].

Metabolic changes on MRSI in aMCI subgroups

Patient selection using appropriate neuropsycholog-
ical tasks also appears to be crucial. When aMCI-
patients were separated into subgroups on the basis on
their performance on a VRM-task, metabolic change in
several regions of the MTL was only found in the aMCI
subgroup with impaired VRM, compared to controls.
In addition, while reduced NAA/mIno levels were de-
tected in the right hippocampal body in the aMCI group
as a whole, there was metabolic change in several sub-
regions of the MTL in the subgroup of aMCI patients
who failed on the VRM task. In this subgroup, reduced
NAA/mIno levels were detected in the left anterior hip-
pocampus and a region that contains the anterior sub-
hippocampal region, where NFT first appear in AD. If
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metabolic change had been restricted to this lower re-
gion containing anterior subhippocampal metabolites,
this could have been in favor of specific subhippocam-
pal changes. However, because of the overlap with sig-
nal emerging from the hippocampal formation in this
region of interest, and since reduced NAA/mIno levels
were also found in the adjacent region sampling the
head of the hippocampus, it is uncertain whether these
changes are related to the anterior subhippocampal re-
gion only. Further MRSI studies using higher magnetic
fields, with a better spatial resolution, may be able to
identify metabolic changes related to neuropathologi-
cal lesions in the entorhinal and perirhinal cortex more
reliably. Within the hippocampus, reduced NAA/mIno
ratios within the left head and the right body could be
related to neuropathological change in the CA1 field of
the hippocampus, which is overrepresented in the head
and the body and where changes have been described in
the early stages of AD in both neuropathological [53]
and neuroimaging studies [54]. As expected, there was
no reduction of the NAA/mIno ratio in the tail of the
hippocampus and the posterior parahippocampalgyrus.
No metabolic anomalies were found in the aMCI sub-
group succeeding on the VRM task compared with con-
trols. Although this subgroup was significantly older
than the controls, age is unlikely to account for the
present findings, since pathological changes would be
expected to increase with age. Also, there was no corre-
lation of metabolic ratios with age. Distinct metabolic
patterns in the two subgroups of aMCI-patients could
not be explained by a difference in severity of cognitive
decline, since mean MMSE scores did not differ either.

Metabolic changes on MRSI and AD

It is likely that reduced NAA/mIno ratios in the
present study are AD related, since a reduction of the
NAA/mIno ratio has been shown to be associated with
severity of AD pathology on postmortem brain tis-
sue [21]. Decreased NAA is a marker of neuronal dys-
function or axonal injury, due to impaired mitochondri-
al metabolism, while elevated mIno levels are associat-
ed with glial activation [18]. In AD, a decrease of NAA
combined with an increase in mIno is thought to reflect
neuronal loss combined with replacement through glio-
sis. Reductions of the NAA ratio or of NAA/Cr levels
have been reported in several studies on patients with
MCI who later declined to AD [55–57] and in patients
with probable AD [17–19,25,27]. Increased mIno has
been reported in the white matter of patients with MCI
and AD [24,58,59]. Recently, it has been suggested that
NAA/mIno ratios [21] or NAA measures [27] could be
additional biomarker candidates for AD.

Performance on the DMS48 and NAA/mIno levels in
the MTL

The present findings support the role of anterior MTL
structures in VRM. Performance on a visual recog-
nition memory task was correlated with NAA/mIno
in the MTL lobes, with both, the region containing
metabolites from the anterior subhippocampal cortex
and the anterior hippocampal formation. While a pre-
vious MRI-study using Volume Based Morphometry
found a correlation of performance on the DMS48 with
the volume of the anterior subhippocampal cortex only,
in line with the crucial role of the perirhinal cortex in
VRM [11–13,41,60,61], using MRSI, there was also
a correlation with the anterior hippocampus. While
a functional relationship between NAA/mIno ratios or
the NAA/Cr-ratio with cognitive function or disease
severity is supported by several studies [17,18,62], it
could be that the correlation with the hippocampal for-
mation reflects a confounding factor related to neu-
ropathological changes in the hippocampus and subhip-
pocampal region of the aMCI patients with AD enrolled
into the present study. However, we cannot exclude
that the association with metabolite levels in MTL re-
flects a functional relationship supporting an alterna-
tive model of declarative memory in which all MTL
structures contribute to VRM [63]. That no correlation
was found in the posterior parahippocampal gyrus and
more posterior structures within the hippocampal for-
mation is consistent with models based on studies with
experimental animals [40] and patients with focal le-
sions suggesting that the posterior MTL is not involved
in VRM [41].

Implications of the assessment of visual recognition
memory for diagnosis of AD in patients with aMCI

The results of the present study are consistent with
previous findings that suggested that aMCI patients
with impaired VRM may be at particularly high risk
for AD [14–16]. On a clinical level, Dubois and col-
laborators suggested that memory impairment with a
recall deficit and a reduced benefit from cueing, high-
ly indicative of MTL dysfunction, ought to be consid-
ered as a “core diagnostic criterion” for the diagnosis
of AD [64]. The memory profile of the aMCI patients
with impaired VRM of the present study was also char-
acterized by reduced delayed free recall and reduced
cueing efficiency on the Free and Cued Selective Re-
minding Test [50]. There is also evidence from imag-
ing studies that patients with impaired VRM present
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changes that are consistent with early AD. On SPECT,
Guedj and collaborators found hypoperfusion in the
MTL, the posterior cingulate and the temporo-parietal
cortices in a subgroup of aMCI patients with impaired
VRM [16], a profile that is commonly found in early
AD [65,66]. Using Voxel Based Morphometry, aMCI-
patients who fail on the VRM-task have been found
to display gray matter loss in the MTL and temporo-
parietal cortex [14], an imaging profile also reported
in early AD [67–69]. Although not specifically in-
vestigated, a number of studies report deficits on tasks
evaluating visual recognition memory in patients with
AD [70] including the early stages of AD [71–73] and
in patients with aMCI [74]. In familial AD, Fox and
collaborators observed that patients who later devel-
oped AD scored below controls on recognition memory
tasks before the clinical onset of the disease [75].

Clinical follow-up for 22 patients who have been fol-
lowed over 6 years indicates that assessing VRM us-
ing the DMS48 can identify early AD in patients with
aMCI with a sensibility and specificity of both 81.8%.
Considering the small group of subjects, the predic-
tive value appears high. This adds to neuropsycholog-
ical and imaging findings that suggest that these pa-
tients may be those who will ultimately develop AD.
Among the limitations of the present study are the rel-
atively small number of subjects included, the absence
of available CSF to assess biomarkers for AD, as well
as amyloid PET or neuropathological data that could
provide additional evidence for AD pathology in these
patients, since the combined use of cognitive tasks
with several neuroimaging techniques, as well as CSF
biomarkers, is most likely to predict AD in patients with
aMCI [52]. However, the findings of the present study
converge with efforts to integrate the type of memory
impairment in early diagnosis of AD [64]. They also
suggest that early diagnosis of AD should not only take
into account changes concerning the hippocampus, but
also changes resulting from dysfunction of the subhip-
pocampal region. Neuropsychological tasks designed
to evaluate brain areas where degenerative change caus-
es dysfunction could be considered as biomarkers re-
flecting neural dysfunction on a clinical level. In this
context, assessing the function of the subhippocampal
region through VRM may critically contribute to early
diagnosis of AD.
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(DMS48) et utilité en neuropsychologie clinique. In Van Der
Linden, M and GREMEM (Eds.), L’évaluation des troubles de
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