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ABSTRACT 

While it is now generally accepted that independent component 
analysis is a good tool for isolating both artifacts and cognitive 
related activations in EEG data, there is still little consensus 
about criteria for automatic rejection of artifactual components 
and single trials. Here we developed a graphical software to 
semi-automatically assist experimenter in rejecting independent 
components and noisy single data trials based on their 
statistical properties. We used kurtosis to detect peaky activity 
distributions that are characteristic of some types of artifact 
and entropy to detect unusual activity patterns. EEG-LAB, a 
user-friendly graphic interface running under Matlab, allows the 
user to tune and calibrate the rejection criteria, to accept or 
override the suggested components and trials labeled for 
rejection, and to compare the results with other rejection 
methods. 

1. INTRODUCTION 

It is critical to detect artifact contamination of evoked-potential 
EEG data for several reasons. First, artifactual signals usually 
have high amplitudes. Thus, even if their distribution in the 
recorded EEG is sparse, they can bias evoked potential averages 
constructed from the data and, as a consequence, bias the 
results of an experiment. Rejecting artifacts is also critical when 
data are used in further processing to interpret brain area 
activity - e.g. event related spectral perturbations or 
Independent Component Analysis (ICA) [1].    

In most current EEG software packages, single data trials are 
rejected when they contain out-of-bounds potential values at 
single electrodes. In event-related experiments, each data epoch 
normally represents a single experimental trial. Usually, the 
experimenter first subtracts a baseline – e.g., the average 
potential before the stimulus occurs – from each trial. Then, the 
experimenter chooses rejection electrodes at which potential 
values should not exceed some defined threshold value. The 
selected electrodes usually include central scalp placements 
which record a large portion of brain activity, parietal 
placements including temporal muscle artifacts and/or frontal 
electrodes containing blinks and eye movement artifacts. The 

problem with this thresholding process is that it only takes into 
account low-order signal statistics (min, max). This kind of 
rejection might not be sufficient to detect muscle activity for 
instance, which typically involves rapid electromyographic 
(EMG) signals of moderate size. Higher order statistical 
properties of the EEG signals might contain more relevant 
information about this and other types of artifacts. 

Independent Component Analysis (ICA) applied to collection 
of single trials EEG data has proven to be efficient for 
separating distinct artifactual and neural EEG processes [1]. 
ICA is able to separate brain activation processes or artifacts 
whose time waveforms are (maximally) independent of each 
other. For instance, eye movements and muscle activities 
produce specific ICA activation patterns and component maps 
[2][3]. While ICA is now considered an important technique for 
removing artifacts, there is still little consensus about the 
characteristics of artifact components. In this paper, we 
develop a framework for semi-automatic artifact rejection based 
on data and independent component activity statistics. We first 
apply these measures to the raw data. Then, we apply ICA to 
the data and use statistics on the independent component 
activities to locate and reject both artifactual data trials and 
artifactual components.  EEG-LAB, a user-friendly graphic 
interface under Matlab, guides the user through this process 
(www.salk.edu/~arno/eeglab.html). The EEG-LAB software is 
based in part on the ICA/EEG toolbox of Makeig et al. 
(www.salk.edu/~scott/ica.html) and implements some of its 
functions to help the user visualize the data and make decisions 
about which components to reject. To test and illustrate the 
rejection process, we used event related EEG data from a go-
nogo visual categorization task [4] (32-electrode montage, ears 
referenced, 1000 Hz sampling rate, 1200 target and non-targets 
trials per subject). 

2. ARTIFACT REJECTION ON RAW 
DATA 

Most artifacts are typically “odd” data in the sense that they 
are transient and unexpected events. Isolating artifacts thus 
involves detecting such events. To do so, we chose two 
measures: probability distribution and kurtosis. The probability 



of a data trial activity, given the probability distribution of 
activity in all data trial, is a measure of the data trial’s 
“oddness”. If the probability value is low, it means that the 
activity values in a data trial at a given electrode are unexpected, 
given the probability distribution of other data trials’ activity at 
the same electrode. To estimate the relative probability of each 
trial of our raw data, we first computed the observed 
probability ( De) density function of all data value at each 
electrode e. Then, we computed the logarithm of the joint 
probability Je(i) of the activity values (Ai) of each single data 
trial i at electrode e: 
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               being the probability of observing the value x in the 
probability distribution De of activity at electrode e. We used 
the logarithm of the joint probability for better graphic 
presentation of very low joint probability values. The joint 
probability was computed for every single data trial at each 
electrode. 

The probability measure allows us to detect outlier trials. We 
might be able to spot other artifact trials based on their 
unusually peaky distribution of potential values. In some 
artifact trials, the distribution of activation is very peaky, for 
example a trial containing strong transient muscle activity. To 
measure this peakyness, we used the kurtosis of the activity 
values in each trial. Kurtosis is the 4th cumulant of the data – 
the mean being the first cumulant and the variance the second. 
For each trial at each electrode, the kurtosis was calculated 
using the following equations: 
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where mn is the nth central moment of all activity values of the 
trial, m1 the mean, and E the expectancy function (in our case 
the average). Typically, if the kurtosis is highly positive, the 
distribution of activity is peaked and sparse, and the identified 
data is likely to be an artifact. If the all activity values are 
similar, the kurtosis will be highly negative. Once more, this 
type of activity is not typical of true EEG signals, which reflect 
non-stationary processes, so low kurtosis values make us 
suspect the presence of artifactual data. Negative kurtosis 
values usually reflect AC (alternating current) or DC (direct 
current) artifacts, for example those induced by line or screen 
currents or by loose electrode contacts. 

Before defining rejection thresholds for both entropy and 
kurtosis, we first normalized these measures (to 0-mean and 
standard deviation 1). We were thus able to define thresholds in 
terms of a number of standard deviations from the mean (figure 

1). We usually used thresholds higher than 5, which means 
than, assuming a gaussian distribution of the true EEG activity 
values at one electrode, the probability that an identified trial 
belongs to the distribution is less than 1.6*10-12. Assuming that 
all the true EEG activity values belong to a single gaussian 
distribution is unrealistic. Yet, given the large difference 
between the true EEG activity values and outliers, this 
approximation is not unreasonable in this context. 
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Figure 1. Rejection of artifact-laden trials on the 
statistics of single electrode activity in the raw data. A. 
Probability and kurtosis of the observed activity at each 
electrode for each trial. The horizontal dashed bars 
indicate rejection thresholds (in numbers of standard 
deviations from the mean). If the measure for one trial 
exceed one of these rejection thresholds, the trial is 
marked for rejection.  B. Visualization of data at each 
electrode with suggested epoch labeled for rejection (the 
arrow indicates one of the electrodes for which the 
statistical measure on the labeled trial exceeds the 
threshold). Before accepting the suggested rejection, the 
user can review these plots. Rejected trials are depicted 
with a colored background and rejected components, 
with a specific color (not shown). 
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3. INDEPENDENT COMPONENT 
ANALYSIS AND EEG 

3.1 Why use ICA 

Having estimated these higher statistical properties of the 
signal, one might ask, why should we go further? All the 
measures we have used so far are based on raw potential values 
at single electrodes. However, EEG activity at different 
electrodes is highly correlated and thus contains redundant 
information. Also, several artifacts might be represented at the 
same set of electrodes and it would be useful if we could isolate 
and measure these artifacts based on their projection to 
overlapping electrode subsets. This is what ICA does [1][5]. 
Intuitively, one can imagine an n-electrode recording array as an 
n-dimensional space. The recorded signals can be projected into 
a more relevant coordinate frame than the single-electrode 
space: the independent component space. In this new 
coordinate frame, the projections of the data on each basis 
vector – i.e. the independent components – are maximally 
independent of each other. Assessing the statistical properties 
of the data reprojected onto these axes, we might be able to 
isolate and remove the artifacts more easily and efficiently. 

ICA has been shown to be more efficient for this purpose than 
other algorithms such as principal component analysis (PCA) 
[2][3]. There are several reasons to use ICA. First, several 
major assumptions of using ICA seem to be fulfilled in the case 
of EEG recordings (for a detailed justification, see [1][6]). The 
first assumption is that the ICA component projections sum 
linearly onto the electrodes. This is actually the case for EEG in 
which different electrical sources – individual muscle and brain 
activations – sum linearly at scalp electrodes following Ohm’s 
law. The second hypothesis is that sources are independent. 
This is not strictly realistic but even if artifact might be related 
to cognitive activation – a muscle contraction for instance is 
usually triggered by activity in the motor cortex – the time 
course of the artifact and the triggering event may be different in 
some or all trials. Thus, they will be accounted by different 
independent components [2]. A third assumption concerns the 
gaussianity of the sources: the source activity – i.e. the 
projection of the data onto the ICA basis vector – must not 
have a gaussian distribution. This last condition is quite 
plausible for artifacts, which are usually sparsely active and 
thus far from gaussian.  

From the original data U, ICA finds a new projection space. 
Multiplication of U by the unmixing matrix W – found for 
example by infomax ICA [5] – represents a linear change of 
coordinate system, from the electrode space to the independent 
component space:  
 

UWS *=                        (4) 

where S is the matrix of activations of the components across 
time in the new ICA coordinate frame (as shown in figure 3C). 
In EEG, each component is a linear weighted sum of the 
activity waveform at all the electrodes (the weights being a row 
of W). The independent components comprise these activations 
and the associated scalp maps give the projection weights of the 
components back into the electrode space. It is possible to 
derive the component spatial maps, as illustrated in figure 3A, 
as the columns of W-1. For computing and visualizing ICA 
components, the software we developed uses the ICA Matlab 
toolbox for EEG of Makeig et al. 
(www.salk.edu/~scott/ica.html).  
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Figure 2. Detection of an artifact-laden trial based on 
the statistics of spatial independent components of 31-
channel EEG. A. Probability and kurtosis of each 
component’s activity in each trial. The horizontal 
dashed bars indicate rejection thresholds (in numbers of 
standard deviations from the mean). If the measure at 
one trial exceeds these rejection thresholds, the trial is 
marked for rejection. B. Activation of each component 
with trials marked for rejection (the arrow indicates 
which component was used to mark the labeled trial for 
rejection). Before accepting the rejection, the user can 
review these plots. Rejected trials are depicted with a 
colored background and rejected components, with a 
specific color (not shown). 
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3.2 ICA statistics and trial’s rejection 

Having computed the independent components of the data, we 
can try to detect outlier trials. As with raw data, we can 
compute both the probability and kurtosis of each trial for each 
component (see equations 1,2 and 3 above). As already point 
out, these measures can help us detect unexpected activity 
(using probability) or activity with an unusually peaky 
distribution (using kurtosis). 

For rejecting single trials, we used either the joint probability or 
kurtosis of data in all components. As with the electrode data, 
we normalized the values of probability and kurtosis and then 
selected rejection thresholds in terms of number of standard 
deviation from the mean (figure 2). To refine the rejection 
criteria, we also defined a maximum number of components for 
which each measure should not exceed the rejection threshold. 
For instance if the maximum was set to 3 components and the 
data trial exceeded the rejection threshold at 4 components or 
more, then the trial was marked for rejection. The basic idea is 
that if the measure exceeds the rejection threshold at many 
components – i.e. the trial an outlier many components – then 
it is very likely to be an outlier trial in the original data. One 
might imagine that an artifact trial would only be expressed in a 
single independent component. The reality is more complex for 
various types of unpredictable noise (i.e. from coughing and 
other head movements), and several components are affected. 
Another example might be activity that saturates at some 
recording sites, thus altering the recording of other electrical 
sources from true EEG. As a consequence, the spatial and 
temporal structure of several components, found by 
preliminary ICA on the raw data, might be biased. 

3.3 Component rejection and user calibration 

While it is possible to reject artifact trials from component 
activity, it is also possible to subtract whole artifactual 
components from the original data. Instead of removing all the 
trials with muscle artifact activity for example, ICA 
decomposition allows the experimenter to subtract from the 
data the activity belonging to the artifactual muscle component. 
One can manually and visually rejects components based upon 
their spatiotemporal characteristics (figure 3), but one can also 
set a rejection threshold for relevant higher order statistics. We 
used three high-order statistical measures for each component:  
the entropy of the activity of the component (over all trials), 
the kurtosis of the activity and the kurtosis of the components’ 
spatial map. Entropy for component i is defined as 
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where              is the probability of observing the activity values 
x in the observed probability distribution of activity Di from 

component i. The use of the term entropy might be abusive 
because the measure computed in equation 5 is only a rough 
approximation of the true entropy of a component. The 
component activity values are not independent across time and 
trials but, because the distribution of activity of outlier 
components is very different from the standard distribution, 
this measure should be able to detect these outlier components. 
Additional terms could be added to equation 5 for minimizing 
the dependence of the entropy measure on the time step 
increment [7]. As a second measure, we used the kurtosis of the 
component’s activity to detect sparse and peaky activity 
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Figure 3. Characteristics of a non-muscle artifact 
component. A. Plot of the spatial map of the 
independent EEG component. B. plot of the laplacian 
of the spatial map of the component. The laplacian 
helps to determine which electrodes are the most active 
in the component. If only one electrode is active (as it is 
approximately the case here), the component is likely to 
be an artifact. C. Plot of the component activity in 1200 
single trials. Each single line is a different trial as in the 
ERP-image plotting format [6]. The color scale limits is 
arbitrary as ICA cannot retrieve the absolute amplitude 
of source activity. If the component is only active in a 
few trials, if it is not related the timing of the stimulus, 
or if it contains very high frequencies (>100Hz), it is 
very likely to be an artifact. D. The power spectrum of 
the component activity showing which frequencies 
dominate the component activity. If the component 
contain a homogenous distribution of high frequencies, 
it is likely to be an artifact component (note the notch 
filter at 50 Hz to remove noise from electrical lines). E. 
the three high-order statistical characteristics of this 
component (see text for details). 
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distribution, which are characteristic of some artifactual 
components (see equation 2 and 3). The last measure we used 
was the kurtosis of the spatial projection of the component. If 
the spatial projection of an artifactual component is peaky – for 
instance only one electrode is activated – then its kurtosis will 
have a high value. We will then be able to automatically detect 
and reject such components by setting an adequate rejection 
threshold.  

Besides these three measures, the EEG-LAB user is presented 
with 4 graphical representations of the component: its spatial 
map, the laplacian of its spatial map, its individual trial activity 
and its frequency content. These representations provide the 
user with several types of information on which he can base his 
judgment for rejecting components (figure 3). Some spatial 
distributions for instance are typical for eye or muscle 
movements. They usually involve a single electrical polarity 
(positive or negative) and extend towards the edge of the skull 
(not shown). 

To assess the efficiency of the three component statistics, we 
considered four classes of artifact components – eye blinks, eye 
movements, muscle activity and other types of artifacts. We 
visually rejected the components for four subjects performing a 
visual go-nogo categorization task of natural images (see the 
introduction for details on the experiment). This manual 
rejection was based upon the visual component characteristics 
as shown in figure 3. We then computed the probability that a 
component was rejected by this method as a function of the 
three statistical measure values. Figure 4 shows that all three 
measure values are correlated with selection as artifact and so 
can be used to detect artifacts. We observed that highest values 
of these measures seem to be characteristic of muscle 
components whereas intermediate values may be characteristic 
of non-muscle artifacts, and low values of non-artifact 
components. For eye blinks and eye movements, we only had 
two components per subject and we were not able to compute 
any statistics. However, the measures we computed might also 
be used to reject these components (for eye blink components: 
activity entropy 13400±3200, activity kurtosis 86±68 and 
spatial kurtosis 4.8±1.5; for eye movements: activity entropy 
8580±4900, activity kurtosis 82±55 and spatial kurtosis 
9.8±4.9). Though these results are still preliminary, they show 
that there is a relation between the statistics of the components 
and their rejection by at least one human experimenter. In the 
software we developed, the user can define thresholds for these 
three measures. Another screen shows the scalp maps of all the 
components, those marked for rejection by the program colored 
red. Buttons allow the user to review each component and to 
add and subtract from the rejection list. The final list chosen 
might be saved and used to calibrate subsequent processing. 
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Figure 4. Component entropy and kurtosis as a 
function of experimenter rejections based on visual 
inspection of plots like figure 3 (4 subjects, 120 
components out of which 65 were labeled as artifacts on 
visual inspection by the experimenter, A.D.). For each 
measure, we assessed the probability of the 
experimenter rejections. To compute the probabilities, 
we sorted the components by their entropy or kurtosis 
values and then partitioned the components into 6 
consecutive groups of 20 (if 10 components in one of 
the groups are artifacts, then the artifact probability is 
0.5). We considered 2 subconditions: muscle 
components (26), non-muscle components (39). We can 
see that the measures were quite accurate for detecting 
artifact. Extreme positive values of any of the measures 
corresponded to 100% of artifact components. 
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4. SUMMARY 

As shown in figure 5, the EEG-LAB software we developed 
allows the user to combine and compare all types of rejection. 
We showed that using high-order statistics of the raw data and 
of the independent components, we may be able to semi-
automatically reject trial artifacts. We also showed that high-
order statistics of independent component activity are strongly 
correlated with the artifact/non-artifact distinction at least as 
defined by common practice in our laboratory. After artifact 
rejection, the cleaned data can be decomposed by ICA and/or 
other analysis method to study true EEG activity. 

Figure 5. Schema for combining different types of 
rejection. After rejecting bad electrodes (1) and 
computing ICA, the algorithm combines three types of 
rejection. Trials can be rejected depending on the data 
statistics or the independent component statistics 
(respectively 2 and 4). Subtraction of artifactual 
independent components can also be performed (3). 

We believe that one may detect artifacts more accurately using 
high-order statistical measures of the signals, regardless of the 
exact implementation of these measures. This approach allows 
experimenters to use information in the data that was taken into 
account by standard rejection methods. The graphical software 
we developed is open-source (software available at 
www.salk.edu/~arno/eeglab.html), with full documented 
source’s code, and is organized hierarchically, meaning that 
complex graphical functions call simpler functions. It is thus 
easy to add new features. It also allows the user to directly call 
artifact rejection commands from a Matlab batch file and to 
combine these functions with other Matlab commands.  
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