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Abstract. Following a flashed stimulus, I show that a simple neurophysiological mechanism in the primary visual 
system can generate orientation selectivity based on the first incoming spikes. A biological model of the lateral 
geniculate nucleus generates an asynchronous wave of spikes, with the most strongly activated neurons firing first. 
Geniculate activation leads to both the direct excitation of a cortical pyramidal cell and disynaptic feed-forward 
inhibition. The mechanism provides automatic gain control, so the cortical neurons respond over a wide range of 
stimulus contrasts. It also demonstrates the biological plausibility of a new computationally efficient neural code: 
latency rank order coding. 
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1. Introduction   
 
The question of how neurons encode and decode 
information is central in neuroscience (Perkel and 
Bullock, 1968). Almost all computational models of 
processing in the visual system start from the premise 
that neurons transmit information in the form of a 
firing rate code. Thus, the pattern of activity in the 
geniculate afferents reaching the visual cortex can be 
described as a set of continuous variables, one for 
each afferent, where the value corresponds to the 
neurons firing rate (Douglas et al., 1988; Ferster and 
Jagadeesh, 1992; Suarez et al., 1995; Carandini et al., 
1997; Hirsch et al., 1998; Adorjan et al., 1999). 
However, an increasingly large number of studies 
have looked at aspects of activity in sensory neurons 
that cannot be described simply in terms of firing rate. 
In particular, there is now considerable evidence that 
the timing of the response to transient stimuli is 
considerably more precise than had previously been 
thought (Mainen and Sejnowski, 1995; Gawne et al., 
1996; Reich et al., 1997; Buracas et al., 1998; Meister 
and Berry, 1999). This temporal precision opens up a 
whole range of computational possibilities that merit 
further attention. 

One such alternative takes advantage of the 
fact that strongly activated neurons will tend to fire 
early, with the result that information about the 
stimulus can be obtained by looking at the latencies at 
which a population of cells fires (Thorpe, 1990). In 
this paper, I test the plausibility of using such latency 
differences as part of a mechanism for generating one 

of the most widely studied functional properties of 
cortical neurons, namely the orientation selectivity of 
neurons in primary visual cortex (V1). Orientation 
selectivity has been studied intensively for decades 
(Vidyasagar et al., 1996; Sompolinsky and Shapley, 
1997; Anderson et al., 2000), but the underlying 
mechanisms are still controversial. Some authors 
starting with Hubel and Weisel (1962) have argued 
that the pattern of geniculate inputs is sufficient to 
explain basic orientation selectivity, whereas others 
have argued that intracortical feedback is important 
(Suarez et al., 1995; Carandini and Ferster, 1997; 
Carandini et al., 1997; Adorjan et al., 1999). The 
spike time based mechanism proposed here allows 
these two apparently opposing views to be reconciled. 
Following a transient visual stimulus, a wave of 
spikes is generated in the lateral geniculate, the time 
of discharge of neurons being a function of the local 
contrast in the image. Electrophysiological studies 
actually report such waves of discharge for lateral 
geniculate neurons presented with bars at high 
contrast (Maunsell et al., 1999; Reinagel et al., 1999). 
This wave can produce orientation selective responses 
very rapidly in the primary visual cortex by using a 
combination of excitatory feed-forward connections 
and feed-forward inhibitory connections involving 
fast shunting inhibition processes demonstrated 
recently (Borg-Graham et al., 1998; Anderson et al., 
2000; Ferster and Miller, 2000). The resulting 
mechanism is interesting for a number of reasons. 
First, its speed means that it is compatible with the 
timing constraints imposed by behavioral and 
neurophysiological data on the speed of processing in 
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the visual system. Second, it provides a simple gain 
control mechanism that allows the system to respond 
in an orientation-selective manner over a wide range 
of stimuli contrasts. Obtaining contrast invariance for 
such early responses is a feature that cannot be 
generated using conventional techniques that involve 
feedback mechanisms. 
 
2. Material and Methods 
 
2.1. Cortical neuron characteristics 
 
A single compartment model of a cortical cell from 
cat visual cortex was implemented in the NEURON 
simulation software system (Hines, 1989). Detailed 
modeling has shown that dendritic inputs tend to 
linearize at the soma (Jaffe and Carnevale, 1999), 
implying that the single compartment simplification is 
not unreasonable. The soma contained Hodgkin-
Huxley type voltage dependent sodium and potassium 
channels (gNa = 180 mS/cm2; ENa = 50 mV; gK = 30 
mS/cm2; EK = 90 mV). Values from various models 
(Suarez et al., 1995; Carandini et al., 1997; Destexhe, 
1997; Mel et al., 1998) were adjusted to fit single 
compartment modeling (surface = 15000 µm2; Rm = 4 
kΩcm2; Cm = 1.0 µF/cm2; Vrest = -70 mV; the 
simulation file is available at www.sccn.ucsd.edu-
/~arno/model.html). Excitatory synapses from the 
lateral geniculate nuclei (LGN) cells included only 
fast AMPA-type synaptic conductances (τAMPA = 5 
ms; Erev-AMPA = 0 mV). Inhibitory neurons in the 
primary visual cortex implemented fast GABAA 
inhibition (τGABA = 10 ms; Erev-GABA = -70 mV). For 
both inhibitory and excitatory receptive fields, 
synaptic delays were ignored and post-synaptic 
potentials were modeled using instantaneous 
exponential decay processes. 
 
2.2. Stimuli 
 
Input images were adjusted to contain a 2-cycle 
period grating stimulating about 100 ON-center 
neurons and 100 OFF-center neurons. Each input 
image consisted of a 17x17 pixel array containing a 
stationary Gabor patch grating (8 bit gray level 
pixels) at a given orientation and contrast:  
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where ),( yxI  is the pixel value (between -1 and 1) 
at position ),( yx , x  and y  being integer between -
8 and 8 relative to the ON or OFF neuron location 
(φ = 0.36 radians and σ = 2.3 pixels). Orientation θ  

in radian was varied by 5° steps over the full 360° 
range and contrast C  was varied from 1.6% to 
100%. An array of 11x11 ON-center cells values - 
excluding borders of the initial image - was computed 
by a direct application of a 7x7 difference of gaussian 
contrast filter on the image. The standard deviation of 
the central positive gaussian was 0.63 pixels 
(surround 1.9 pixels), and the amplitude of the 
surround negative gaussian was divided by 3 with 
respect to the central region. The array of OFF-center 
cells was calculated using the same filter on the 
negative image with inverted pixel values. 
 
 

 
 
Figure 1. Model architecture and dynamics. (a) Transformation of 
an input image into neuronal discharges by arrays of ON-center and 
OFF-center neurons and connectivity of these neurons with a V1 
pyramidal neuron. Synaptic weights are depicted in gray scale; 
mean gray values standing for 0, brightest ones for excitatory 
AMPA synapses and dark ones for inhibitory GABAA synapses. (b) 
Dynamic of neuronal activation. In the LGN, the latency of 
discharges of neurons depends on the local intensity of activation. 
For the V1 neuron to discharge, highest synaptic weights must be 
activated first, before the inhibition kicks in. (c) Latency of spikes 
of ON-center neurons pooled for all 72 grating at 100% and 1.6% 
contrast (2 ms time bin). 
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2.3. Input from the LGN 
 
Gabor patch gratings at various orientation and 
contrast were presented to an array of ON-center and 
OFF-center cells modeling the LGN neurons. These 
cells were modeled as noisy leaky integrate-and-fire 
neurons, whose inputs corresponded to the local 
contrast in the image as depicted in the previous 
paragraph. The earliest latencies correspond to those 
cells for which the value of contrast is the highest 
(positive for ON-center cells and negative for OFF-
center cells), whereas lower activation levels resulted 
in progressively longer latencies (Fig. 1). The noise 
added to the LGN neurons corresponded to a 3.6 ms 
standard deviation of spike timing at the highest 
contrast and 12.6 ms at the lowest contrast 
(corresponding to a signal to noise ratio of 1 at the 
lowest contrast). Averages spike latencies were 9 ms 
at the highest contrast and 47.3 ms at the lowest 
contrast. These values appear reasonable with respect 
to neurophysiological studies (Reich et al., 1997; 
Maunsell et al., 1999). The latencies of LGN neurons’ 
spikes were generated with the neural network 
simulator SpikeNET with a membrane time constant 
of 20 ms (Delorme et al., 1999). For a given stimulus 
and at each precise location, either an ON or an OFF-
center cell fires one spike, thus ruling out the 
possibility of using a conventional rate code based on 
inter-spike interval. 
 
2.4 Connectivity 
 
Each of the 242 LGN neurons - 11x11 ON-center and 
11x11 OFF-center cells - forms a single excitatory 
synapse onto the cortical cell's soma. Synaptic 
weights were set according to a Gabor function that 
makes the neuron selective to contours oriented at 0° 
(Fig. 1). 
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where Wi is the synaptic weight between ON-center 
neuron ri in the LGN and the unique neuron n in V1, 
and d(rj, n) represents the Cartesian distance in pixels 
separating the two neurons (A = 0.75; B = 0.1; σ = 
2.5). The B parameter was added to ensure that the 
selectivity of the neuron could not simply be 
explained by the activation of sub-populations of 
synapses. Electrophysiological studies have explicitly 
shown that the absence of discharge for non-optimal 
orientations is not simply due to the withdrawal of 
excitation (Hirsch et al., 1998; Anderson et al., 2000). 
Parameter B contributes to about half the sum of 

weights. OFF-center cells make connections with the 
V1 neuron using the same function but with a phase 
shift of 180°.  

Inhibitory interneurons were not explicitly 
modeled. For simplicity, I supposed that the LGN 
cells trigger an inhibitory neuron at the same location 
sufficiently rapidly so the onset of the inhibitory post-
synaptic potentials (IPSP) coincided with the onset of 
excitatory post-synaptic potentials (EPSP). As I will 
discuss later, this would be the case if the 
intradendritic propagation of EPSP compensated for 
IPSP time lag. The amount of inhibition slowly 
decreased with the distance separating the input LGN 
neuron to the cortical neuron. Synapses were modeled 
using fast GABAA synapses but preliminary studies 
show that the addition of slow GABAB synapses does 
not modify the model’s behavior. 
 
3. Results 
 
For a given amount of inhibition, excitatory synaptic 
weights afferent to the unique cortical neuron were 
adjusted such that at 100% of contrast the neuron 
discharged over a 65° orientation range centered on 
the preferred orientation (here 0°). Even without 
inhibition, some orientation selectivity will be 
present: only at the preferred orientation will the high 
amplitude EPSPs all arrive within a sufficiently short 
period to trigger a spike. This period depends on the 
duration the membrane time constant (τ = 9.5 ms in 
our case) and by setting the spike threshold at a 
suitable value, the cortical neuron can be made 
orientation selective. However, the neuron's 
selectivity is not robust against a drop in stimulus 
contrast since the increased latency spread of the 
incoming spikes prevents the neuron from reaching its 
threshold (Fig. 2, black area). 

In contrast, with feed-forward inhibition, the 
neuron can cope with a wide range of different 
contrasts. This can be seen from the other curves in 
Fig. 2, which show that, as the total inhibition 
conductance increases, the neuron becomes more and 
more robust to contrast changes: for the condition of 
highest inhibition, the neuron's orientation selectivity 
can remains roughly constant down to contrasts as 
low as 3%. Note that there is a linear relationship 
between the sum of inhibitory conductances and the 
sum of excitatory conductances (linear fit: R = 
0.9996) so the balance between excitation and 
inhibition is similar in every condition. The neuron 
fails to respond at 1.6% of residual contrast 
irrespective of the amount of inhibition:  1.6% 
residual contrast would correspond to a standard 
deviation between spike latencies of 12.6 ms and. 
Since the excitatory AMPA time constant is 5 ms, the 
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inhibition mechanism for contrast invariance breaks 
down because EPSPs become independent.  

The selectivity of the neuron depends mainly 
on the timing of the excitatory inputs relative to the 
rapidly increasing inhibition. If strong excitatory 
inputs are triggered fast enough, the neuron can reach 
its threshold before significant inhibition kicks in 
(Fig. 3). On the other hand, if the early activated 
excitatory synapses are relatively weak, the relative 
contributions of excitation and inhibition will be 
biased in favor of inhibition and the neuron will not 
fire. This property was preserved using a 1-ms delay 
for the inhibitory synapses but not using a 2-ms delay 
(data not shown). However, as pointed out in the 

Methods section, the effect of excitation on the soma 
is delayed by intracellular potential propagation. The 
issue of the relative timing between excitation and 
inhibition will require detailed simulations of the V1 
neuron geometry. 

As illustrated in Fig. 4, the neuron's spike 
latency is shortest for its preferred orientation. This 
means that when a population of orientation-selective 
neurons is presented with a grating stimulus, the 
optimally activated neuron will tend to respond faster 
than the other ones. Thus, the model V1 neuron is 
orientation selective in terms of spike latency. As 
shown in Fig. 4, the latency of the first spike was 
shortest when the orientation of the stimulus matched 
the neurons preferred orientation. Response latency 
increased when stimulus orientation was moved away 
from the preferred value, and the neuron did not 
discharge at all for orientations beyond a certain 
value. Neurophysiological studies have shown that 
real neurons can behave very similarly in primate V1. 
Both Celebrini et al. (1993) and Gawne et al. (1996) 
observed increases in latency between the preferred 
orientation and one shifted by 30°. As in our model, 
for larger orientation shifts, they did not observe any 
responses. Thus, for the next processing stage, the 
information can again be encoded in the pattern of 
spike latency across the neuronal population. 

Additional simulations showed that 
inhibitory currents did not have to be proportional to 
the output neuron potential. In these simulations, 
inhibitory synapses injected simple exponentially 
decreasing current pulses (tau = 5ms with current 
proportional to synaptic weight). In these conditions, 
the output neuron still responded to a wide range of 
contrast (not shown). 

I also tested whether the model required the 
precise pairing of individual excitatory and inhibitory 
spikes by randomly suppressing inhibitory synapses. 
The output neuron behavior remained qualitatively 
unchanged when up to 70% of the inhibitory synapses 
were randomly suppressed (figure 5). Note however 
that, because of the random suppression of synapses, 
the neuron latency orientation tuning curve became 
discontinuous and asymmetric with respect to the 
neuron's preferred orientation. This effect was even 
more pronounced when 90% of the inhibitory 
synapses were suppressed (not shown). 

In the previous models, each neuron 
discharged only once. To address the issue of multiple 
spikes, after the first spike, each input neuron was 
allowed to discharge an additional 4 Poisson spikes 
with a mean rate of 100 spikes per second (2-ms 
refractory period). Fast synaptic depression was 
implemented for excitatory connections, with 
synaptic efficacy divided by 3 for the second spike, 4 
for the third, 5 for the fourth, and 

Figure 2. Range of orientations to which the neuron discharged as 
a function of contrast and for different degrees of shunting 
inhibition (depicted by different gray levels). The figures represent 
the sum of all the inhibitory conductances in µS. The strength of 
the excitatory input was adjusted so that the neuron responded over 
a range of 65° at 100% contrast. Each colored surface represents 
the range of discharge of the output neuron in the contrast-
orientation 2-D space for a given level of inhibition. The limit was 
defined by the range of orientations to which the cell responded on 
at least 5 of the 10 trials when noise was added. The standard 
deviations at the borders are always less than 5° (not shown). With 
no inhibition (black surface), the neuron no longer responded when 
contrast was reduced to 50%. In contrast, with increasing shunting 
inhibition, the neuron could remain selective even when stimuli 
were presented at very low contrasts. Thus the presence of fast 
shunting inhibition allows the neuron to keep responding even at 
low contrasts. 
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6 for the fifth. As shown in figure 6, in the absence of 
inhibition, the model could not respond to changes in 
stimulus contrast. Note that absence of synaptic 
depression led to similar results (not shown). Thus 
fast feed-forward inhibition leads to responses at 
different levels of contrast even if input neurons 
discharge multiple spikes. 

 
4. Discussion 
 
I proposed a hierarchical scheme in which the outputs 
of LGN cells are pooled together to drive an oriented 
simple cell in V1. The simulations reported here 
should be taken as proof-of-concept that fast 
inhibition can shape excitatory input at the very 
beginning of the integration of incoming spikes, thus 
providing early orientation selectivity and contrast 
invariant responses for the highest level of inhibition 
tested. I proposed that non-orientation selective fast 
inhibition shapes early responses and accounts for 
early orientation selectivity and contrast invariance 
properties of V1 neurons (Celebrini et al., 1993; 
Volgushev et al., 1995; Carandini et al., 1997). The 
results show that, even in a reasonably detailed 
neurophysiological model, order sensitivity based on 
fast fast inhibition could indeed provide a very rapid 
mechanism for producing orientation selectivity. I 
will now review converging evidence arguing in favor 
of such a neuronal dynamics. 
  
4.1. Fast feed-forward shunting inhibition 
 
In real neurons, the onset of inhibition following a 
transient stimulation corresponds to shunting 
inhibition. Hyperpolarizing inhibition lasts as long as 
the IPSP itself, which can be tens of ms, depending 
on the time constant of the cell. Shunting effects 
however, last only as long as the post-synaptic ion 
channels remain open, i.e. for a period of a few ms in 

Figure 4. Spike latency of the first spike of the V1 neuron model as 
a function of orientation for 4 different degrees of contrast and 
inhibition fixed to an intermediate value (sum of 1 µS). The 
Standard deviation of spikes' timing was computed using 10 
different initial conditions. The data were fitted with curves based 
on second-degree polynomial functions. For all contrast conditions, 
the latency of discharge of the neuron is a function of the 
orientation of the stimulus: earliest latencies corresponded to the 
preferred orientation. This behavior is in agreement with 
electrophysiological recordings. 

Figure 3. Total excitatory (light gray curves) and inhibitory (dark gray curves) post-synaptic conductances of the model of V1 neuron calculated 
for 3 orientations, 0°, 30° and 180° and 2 levels of contrast. Dotted lines if present indicate the latency of the neuron’s discharges. The inhibitory 
conductance is constant for a given contrast (though random jitter in spike latency may be present) and it is the dynamic of the excitation that 
determine the neuron’s behavior. The neuron spikes for the 0° and 30° oriented grating but not for the 180° one. The latency of discharge is faster 
at 0° than at 30° which indicate that the latency code can be used at the next stage of processing. The total inhibitory conductance was 4 µS and 
the transient increase in shutting inhibition is compatible with electrophysiological recordings (see text for details). 
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the case of GABAA receptors. In the model presented 
here, shunting effects – increases in inhibitory 
channel conductance as shown in fig 3 – are present 
throughout EPSP integration. 

Shunting effects result in an increased 
membrane conductance and recent experiments 
showed that after a flashed stimulus, visual inputs 
evoke strong shunting inhibition in visual cortical 
neurons (Berman, Douglas, Martin and Whitteridge, 
1991; Borg-Graham et al., 1998; Anderson et al., 
2000; Ferster and Miller, 2000). Both Borg-Graham 
et al. (1998) and Anderson et al. (2000) showed that 
membrane conductance for stimuli at the preferred 
orientation can rise to more than three times that of 

the resting state and it has been argued that the 
magnitude of such changes can easily be 
underestimated. This shunting inhibition seems to 
occur very rapidly after the stimulus onset (within a 
few ms) and can precede spike discharge (Anderson 
et al., 2000). 

Most of the studies published on the topic of 
inhibition are directly or indirectly compatible with 
our model (Gabbott et al., 1988; Celebrini et al., 
1993; Volgushev et al., 1995) and show that fast feed-
forward inhibition might occur even before the 
visually evoked first spike of a neuron. Hirsch et al. 
(1998) made intracellular recordings from neurons in 
V1 while stimulating the retina with flashed black or 
white squares of various sizes in different locations. 
They showed that for white squares overlapping the 
ON and OFF regions of a neuron's receptive field, the 
very first milliseconds following excitation showed 
net effects that could be inhibitory even if the neuron 
received substantial excitatory input. Such data show 
that inhibition can indeed be fast enough to counteract 
the effects of excitatory post-synaptic potentials. 
Hirsch et al. (1998) also showed that for non-optimal 
stimuli - positive contrast on the OFF receptive field 
location – the decrease in activity cannot be explained 
by the suppression of thalamic inputs. Rather, as in 
our model, it seems to be due to a fast inhibitory 
process that is relatively independent of the stimulus. 
Volgushev et al. (1995) showed very similar results 
with flashed bars of different orientations. 
Extracellular recordings have also shown that a 
reduction of spontaneous activity triggered by non-
optimal stimuli can have similar latencies to the spike 
onsets produced by optimal orientations (Celebrini et 
al., 1993). These studies demonstrate that inhibitory 
processes take place at the very beginning of an 

Figure 5. Spike latency of the first spike of the V1 neuron model 
(with 70% of inhibitory input suppressed) as a function of 
orientation for 4 different degrees of contrast and inhibition fixed 
to an intermediate value (sum of 1.2 µS). The output neuron was 
still able to respond to a wide range of contrast under these 
conditions. 
 

Figure 6. Using the model allowing several spikes per neuron (see text for details), latency of the first spike of the V1 neuron as a function of 
orientation and contrast. A. without inhibition, the output neuron discharged only at the highest stimulus contrasts. B. with inhibition (sum of 4 
µS), the neuron discharged selectively to a wide range of contrast. 
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event-related neuronal response. 
While all these studies strongly support the 

existence of the sort of fast feed-forward inhibition 
used in our model, even apparently contradictory 
studies that favor linear integration of spikes are 
compatible with transient shunting inhibition. 
Experimental and modeling works have argued that 
long-lasting shunting inhibition does not play a major 
role in orientation selectivity (Douglas et al., 1988; 
Ferster and Jagadeesh, 1992; Hirsch et al., 1998). 
However, most of these studies start from the basic 
assumption that stimuli are represented by the firing 
rate of neurons. Thus, even when modeling spiking 
neurons in V1 (Maex and Orban, 1996) or when 
implementing feedforward inhibition (Troyer et al., 
1998), the discharge patterns of geniculate inputs 
involved in generating orientation selectivity are 
typically modeled using Poisson spike distributions. It 
is commonly supposed that an initial linear 
integration phase (Ferster and Jagadeesh, 1992; 
Hirsch et al., 1998) precede cortical amplification 
(Suarez et al., 1995; Adorjan et al., 1999) and/or 
normalization (Carandini and Ferster, 1997; 
Carandini et al., 1997). However, these models and 
the model I presented in this article act on a different 
time scale and they are by no means incompatible. 
The kind of processing I presented here would only 
occur in response to very fast changing stimuli or 
following the release of saccade-related inhibition in 
the geniculate at the end of an eye movement, when 
the spike timing is more reliable (Mechler et al., 
1998).  
 
4.2. Rapid Visual Processing 
 
One of the other aspects of the current model that 
merits discussion is its relevance to rapid visual 
processing. The speed with which the visual system 
can process complex scenes poses a major challenge 
for current models of visual processing. Neural 
recording and behavioral data (Thorpe et al., 1996; 
Delorme, Richard and Fabre-Thorpe, 2000; Keysers 
et al., 2001) imply that the underlying processing at 
each stage of the visual pathway must be extremely 
rapid, and at least some information needs to be made 
available within the first 10 milliseconds following 
the arrival of inputs from the preceding stage. These 
very severe temporal constraints are problematic for 
conventional rate codes because few cells will be able 
to emit more than one spike in less than 10 ms. Such 
data argue strongly in favor of a mainly feed-forward 
processing strategy in which computations need to be 
performed very rapidly. The model reported here is 
compatible with these time constraints and can 
account for very fast contrast invariant responses of 
V1 cells. Celebrini et al. (1993) showed for instance 
that a 10 ms oriented bar presentation followed by a 

perpendicular mask is sufficient to elicit selective 
responses in V1 neurons.  

My model also demonstrates the biological 
plausibility of using computationally efficient 
population codes for hierarchical processing in the 
visual system. If the amount of shunting inhibition in 
the modeled neuron depends on the number of spikes 
that have been received from the LGN, excitatory 
synaptic potential will be shunted to a degree that 
depends on their order of arrival rather than their time 
of discharge. This form of Rank Order Coding has a 
number of features that make it very interesting from 
a computational point of view (Thorpe, 1990; 
Gautrais and Thorpe, 1998; Van Rullen and Thorpe, 
2001). In a previous model, I implemented a 
hierarchical neural network of two layer of integrate-
and fire neurons, the first one implementing 
orientation selectivity as in the model presented here 
and the second one implementing face recognition. I 
have shown that such a network could perform 
complex visual processing tasks that include the 
localization and recognition of new faces in 
photographs and that it could cope with high level of 
noise (Delorme, et al., 1999; Delorme and Thorpe, 
2001). According to the Rank-order-coding 
hypothesis, the main aspect in the current model that 
plays a role in the encoding of orientation at different 
contrasts is the extent to which real neurons behave as 
perfect integrators. 

I have shown that a simple mechanism that 
uses fast feed-forward shunting inhibition, coupled 
with the fact that strongly activated neurons will tend 
to fire early, provides a form of automatic gain 
control that allows selectivity to be maintained over a 
very wide range of stimulus contrasts. This new 
biologically plausible mechanism may be used to 
produce a model for orientation selectivity than can 
operate very quickly, even under conditions where 
each input only has time to emit one spike. This 
mechanism has also been shown to be 
computationally efficient to perform image 
processing. Finally, it is theoretically compatible with 
rate based model that operate over longer time scales.  

The model leads to predictions that could be 
tested experimentally. Suppressing fast inhibition in a 
whole cell clamped cortical neuron should result in 
broader initial orientation selectivity and the loss of 
contrast invariant selective responses. However this 
blockage might have no visible effect at a longer time 
scale (Nelson et al., 1994). In addition, I would also 
expect fast shunting inhibition and membrane 
conductance increases to occur not only for the 
preferred orientation (Borg-Graham et al., 1998; 
Anderson et al., 2000) but also for other orientations. 
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